Cotinine Inhibits Catecholamine Release Evoked by Cholinergic Stimulation from the Rat Adrenal Medulla

  • Koh, Young-Yeop (Department of Internal Medicine (Cardiology), College of Medicine, Chosun University) ;
  • Jang, Seok-Jeong (Department of Neurosurgery (Cerebrovascular Surgery), College of Medicine, Chosun University) ;
  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
  • Published : 2003.09.01

Abstract

The aim of the present study was to clarify whether cotinine affects the release of catecholamines (CA) from the isolated perfused rat adrenal gland, and to establish the mechanism of its action, in comparison with the response of nicotine. Cotinine (0.3∼3 mM), when perfused into an adrenal vein for 60 min, inhibited CA secretory responses evoked by ACh (5.32 mM), DMPP (a selective neuronal nicotinic agonist, 100 $\mu$M for 2 min) and McN-A-343 (a selective muscarinic $M_1 -agonist, 100 \mu$ M for 2 min) in dose- and time-dependent manners. However, cotinine did not affect CA secretion by high $K^+$ (56 mM). Cotinine itself also failed to affect basal CA output. Furthermore, in the presence of cotinine (1 mM), CA secretory responses evoked by Bay-K-8644 (an activator of L-type $Ca^{2+}$ channels, 10 $\mu$ M) and cyclopiazonic acid (an inhibitor of cytoplasmic $Ca^{2+}-ATPase, 10 \mu$ M) were relative time-dependently attenuated. However, nicotine (30$\mu$ M), given into the adrenal gland for 60 min, initially rather enhanced CA secretory responses evoked by ACh and high $K^+$, followed by the inhibition later, while it time-dependently depressed the CA release evoked by McN-A-343 and DMPP. Taken together, these results suggest that cotinine inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does fail to affect that by the direct membrane-depolarization. It seems that this inhibitory effect of cotinine may be exerted by the cholinergic blockade, which is associated with blocking both the calcium influx into the rat adrenal medullary chromaffin cells and $Ca^{2+}$ release from the cytoplasmic calcium store. It also seems that there is a big difference in the mode of action between cotinine and nicotine in the rat adrenomedullary CA secretion.

Keywords

References

  1. Akaike, A., Mine, Y., Sasa, M., and Takaori, S., Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J. Pharmacol. Expt. Ther., 255, 333-339 (1990)
  2. Andersson, K., Jansson, A., Kuylenstierna, F., and Eneroth, P., Nicotine and its major metabolite cotinine have different effects on aldosterone and prolactin serum levels in he normal male rat. Eur. J. Pharmacol., 228, 305-312 (1993)
  3. Anton, A. H. and Sayre, D. F., A study of the factors affecting the aluminum oxidetrihydroxy insole procedure for the analysis of catecholamines. J. Pharmacol. Exp. Ther., 138, 360-375 (1962)
  4. Benowitz, N. L., Jacob, P., Fong, I., and Gupta, S., Nicotine metabolic profile in man: Comparison of cigarette smoking and transdermal nicotine. J. Pharmacol. Exp. Ther., 268, 296-303 (1994)
  5. Benowitz, N. L. and Jacob, P., Pharmacokinetics and metabolism of nicotine and related alkaloids: In Arneric, S.P. and Brioni, J.D. (Eds.). Neuronal Nicotinic Receptors. Pharmacology and Therapeutic Opportunities, Wiley-Liss, New York, pp. 213-234, (1999)
  6. Benowitz, N. L., Kuyt, F., Jacob, P., Jones, R. T., and Osman, A. L., Cotinine disposition and effects. Clin. Pharmacol. Ther., 34, 604-611 (1983) https://doi.org/10.1038/clpt.1983.222
  7. Borzelleca, J. F., Bowman, E. R., and McKennis, H. Jr., Studies on the respiratory and cardiovascular effects of (-)-cotinine. J. Pharmacol. Exp. Ther., 137, 313-318 (1962)
  8. Chahine, R., Aftimos, G., Wainberg, M. C., Navarro-Delmasure, C., Abou Khalil, K., and Chahoud, B., Cotinine modulates the cardiovascular effects of nicotine. Med. Sci. Res., 24, 21-23 (1996)
  9. Chahine, R., Calderone, A., and Navarro-Delmasure, C., The in vitro effects of nicotine and cotinine on prostacyclin and thromboxane biosynthesis. Prostaglandins Leukot Essent Fatty Acids, 40, 261-266 (1990) https://doi.org/10.1016/0952-3278(90)90047-O
  10. Challiss, R. A. J., Jones, J. A., Owen, P. J., and Boarder, M. R., Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J. Neurochem., 56, 1083-1086 (1991) https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  11. Cheek, T. R., O'Sullivan, A. J., Moreton, R. B., Berridge, M. J., and Burgoyne, R. D., Spatial localization of the stimulusinduced rise in cyrosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett., 247, 429-434 (1989) https://doi.org/10.1016/0014-5793(89)81385-7
  12. Crooks, P. A., Li, M., and Dwoskin, L. P., Metabolites of nicotine in rat brain after peripheral nicotine administration: Cotinine nornicotine and norcotinine. Drug Metab. Dispos., 25, 47-54 (1997)
  13. Cryer, P. E., Haymond, M.W., Santiago, J. V., and Shah, S. D., Norepinephrine and epinephrine release and adrenergic mediation of smoking associated hemodynamic and metabolic events. N. Engl. J. Med., 295, 573-577 (1976) https://doi.org/10.1056/NEJM197609092951101
  14. Dar, M. S., Bowman, E. R., and Li, C., Intracerebellar nicotinic-cholinergic participation in the cerebella adesinoergic modulation of ethanol-induced motor incoordination in mice. Brain Res., 644, 117-127 (1994) https://doi.org/10.1016/0006-8993(94)90354-9
  15. Douglas, W. W., Kanno, and Sampson, S. R., Influence of the ionic environment on the membrane potential of adrenal chromaffin cells and on the depolarizing effect of acetylcholine. J. Physiol., 191, 107-121 (1967) https://doi.org/10.1113/jphysiol.1967.sp008239
  16. Douglas, W. W. and Rubin, R. P., The role of calcium in the secretary response of the adrenal medulla to acetylcholine. J. Physiol., 159, 40-57 (1961) https://doi.org/10.1113/jphysiol.1961.sp006791
  17. Dwoskin, L. P., Teng, L., Buxton, S. T., and Crooks, P. A., S-(-)-Cotinine, the major brain metabolite of nicotine, stimulates nicotinic receptors to evoke $[^3H]$ dopamine release from rat striatal slices in acalcium-dependent manner. J. Pharmacol. Exp. Ther., 288, 905-911 (1999)
  18. Erenmemisoglu, A. and Tekol, Y., Do nicotine metabolites have an effect on pain perception? Antinociceptive effect of cotinine in mice. Pharmazie, 49, 374-375 (1994)
  19. Garcia, A. G., Sala, F., Reig, J. A., Viniegra, S., Frias, J., Fonteriz, R., and Gandia, L., Ihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature, 309, 69-71 (1984) https://doi.org/10.1038/309069a0
  20. Garvey, A. J., Ward, K. D., Bliss, R. E., Rosner, B., and Vokonas, P. S., Relation between saliva cotinine concentration, cigarette consumption, and blood pressure among smokers. Am. J. cardiol., 76(1), 95-97 (1995) https://doi.org/10.1016/S0002-9149(99)80813-3
  21. Goeger, D. E. and Riley, R. T., Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem. Pharmacol., 38, 3995-4003 (1989) https://doi.org/10.1016/0006-2952(89)90679-5
  22. Goldberg, S. R., Risner, M. E., Stolerman, I. P., Reavill, C., and Garcha, H. S., Nicotine and some related compounds: effects on schedule-controlled behavior and discriminative properties in rats. Psycho. pharmacology, 97, 265-302 (1989)
  23. Gorrod, J. W. and Wahren, J., Nicotine and Related Alkaloids: Absorption, Distribution, Metabolism, Excretion. Chapman and Hall, London, (1993)
  24. Hammer, R. and Giachetti, A., Muscarinic receptor subtypes: $M_1$ and $M_2$ biochemical and functional characterization. Life Sci., 31, 2992-2998 (1982)
  25. Hatsukami, D. K., Grillo, M., Pentel, P. R., Oncken, C., and Bliss, R., Safety of cotinine in humans: physiologic, subjective and cognitive effects. Pharmacol. Biochem. Behav., 57, 643-650 (1997) https://doi.org/10.1016/S0091-3057(97)80001-9
  26. Hatsukami, D., Pentel, P. R., Jensen, J., Nelson, D., Allen, S. S., Goldman, A., and Rafael, D., Cotinine: effects with and without nicotine. Psychopharmacology, 135, 141-150 (1998) https://doi.org/10.1007/s002130050495
  27. Hurt, R. D., Dale, L. C., Offord, K. P., Lauger, G. G., Baskin, L. B., Lawson, G. M., Jiang, N. S., and Hauri, P. J., Serum nicotine and cotinine levels during nicotine-patch therapy. Clin. Pharmacol. Ther., 54, 98-106 (1993) https://doi.org/10.1038/clpt.1993.117
  28. Iino, M., Calcium-induced calcium release mechanism in guinea pig taenia caeci. J. Gen. Physiol., 94, 363-383 (1989) https://doi.org/10.1085/jgp.94.2.363
  29. Keenan, R. M., Hatsukami, D. K., Pentel, P. R., Thompson, T. N., and Grillo, M. A., Pharmacodynamic effects of cotinine in abstinent cigarette smokers. Clin. Pharmacol. Ther., 55, 581-590 (1994) https://doi.org/10.1038/clpt.1994.72
  30. Kilpatrick, D. L., Slepetis, R., and Kirshner, N., Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J. Neurochem., 36, 1245-1255 (1981) https://doi.org/10.1111/j.1471-4159.1981.tb01724.x
  31. Kim, K. S., Borzelleca, J. F., Bowman, E. R., and McKennis, H. Jr., Effects of some nicotine metabolites and related compounds on isolated smooth muscle. J. Pharmacol. Exp. Ther., 161, 59-69 (1968)
  32. Ladona, M. G., Aunis, D., Gandia, A. G., and Garcia, A. G., Dihydropyridine modulation of the chromaffin cell secretory response. J. Neurochemstry, 48, 483-490 (1987) https://doi.org/10.1111/j.1471-4159.1987.tb04118.x
  33. Lim, D. Y. and Hwang, D.-H., Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Kor. J. Pharmacol., 27(1), 53-67 (1991)
  34. Lim, D. Y., Kim, C.-D., and Ahn, K.-W., Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch. Pharm. Res., 15(2), 115-125 (1992) https://doi.org/10.1007/BF02974085
  35. Oka, M., Isosaki, M. and Yanagihara, N., Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release: In Catecholamines: Basic and Clinical frontiers (Eds. Usdin, E., Kopin, I. J., and Brachas, J.). Pergamon Press, Oxford, pp. 70-72, (1979)
  36. Patterson, T. R., Stringham, J. D., and Meikle, A. W., Nicotine and cotinine inhibit steroidogenesis in mouse Leydig cells. Life Sci., 46, 265-272 (1990) https://doi.org/10.1016/0024-3205(90)90032-M
  37. Pinto, J. E. B. and Trifaro, J. M., The different effects of D-600 (methoxyverapamil) on the release of adrenal catecholamines induced by acetylcholine, high potassium or sodium deprivation. Brit. J. Pharmacol., 57, 127-132 (1976) https://doi.org/10.1111/j.1476-5381.1976.tb07662.x
  38. Saareks, V., Riutta, A., Mucha, I., Alanko, J., and Vapaatalo, H., Nicotine and cotinine modulate eicosanoid production in human leukocytes and platelet rich plasma. Eur. J. Pharmacol., 248(4), 345-349 (1993)
  39. Sastry, B. V. R., Chance, M. B., Singh, G., Horn, J. L., and Janson, V. E., Distribution and retention of nicotine and its metabolite, cotinine, in the rat as a function of time. Pharmacology, 50, 128-136 (1995) https://doi.org/10.1159/000139274
  40. Schramm, M., Thomas, G., Towart, R., and Franckowiak, G., Novel dihydropyridines with positive isotropic action through activation of $Ca^{2+}$ channels. Nature, 303, 535-537 (1982) https://doi.org/10.1038/303535a0
  41. Seidler, N. W., Jona, I., Vegh, N., and Martonosi, A., Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasimc reticulum. J. Biol. Chem., 264, 17816-17823 (1989)
  42. Shoaib, M. and Stolerman, I. P., Plasma nicotine and cotinine levels following intravenous nicotine self-administration in rats. Psychopharmacology, (Berl) 143(3), 318-321 (1999) https://doi.org/10.1007/s002130050954
  43. Suzuki, M., Muraki, K., Imaizumi, Y., and Watanabe, M., Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$-pump, reduces $Ca^{2+}$-dependent $K^+$ currents in guineapig smooth muscle cells. Br. J. Pharmacol., 107, 134-140 (1992) https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  44. Takada, K., Swedberg, M. D., Goldberg, S. R., and Katz, J. L., Discriminative stimulus effects effects of intravenous 1-nicotine analogs or metabolites in squirrel monkeys. Psycho. pharmacology, 99, 208-212 (1989) https://doi.org/10.1007/BF00442809
  45. Tallarida, R. J. and Murray, R. B., Manual of pharmacologic calculation with computer programs. 2nd Ed New York Speringer-Verlag, pp. 132, (1987)
  46. Uceda, G., Artalejo, A. R., Lopez, M. G., Abad, F., Neher, E., and Garcia, A. G., $Ca^{2+}$-activated $K^+$ channels modulated muscarinic secretion in ca chromaffin cells. J. Physical., 454, 213-230 (1992)
  47. Uyama, Y., Imaizumi, Y., and Watanabe, M., Effects of cyclopiazonic acid, a novel $Ca^{2+}$-ATPase inhibitor on contractile responses in skinned ideal smooth muscle. Br. J. Pharmacol., 106, 208-214 (1992) https://doi.org/10.1111/j.1476-5381.1992.tb14316.x
  48. Vainio, P. J., Vilusksela, M., and Tuominen, R.K., Inhibition of nicotinic by cotinine in bovine adrenal chromaffin cells. Pharmacol. Toxical., 83, 188-193 (1998) https://doi.org/10.1111/j.1600-0773.1998.tb01467.x
  49. Wada, Y., Satoh, K., and Taira, N., Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog. Naunyn-Schmiedebergs Arch. Pharmacol., 328, 382-387 (1985) https://doi.org/10.1007/BF00692905
  50. Wakade, A. R., Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol., 313, 463-480 (1981) https://doi.org/10.1113/jphysiol.1981.sp013676
  51. Winders, S. E., Grunberg, N. E., Benowitz, N. L., and Alvares, A.P., Effects of stress on circulating nicotine and cotinine levels and in vitro nicotine metabolism in the rat. Psychopharmacology, 137, 383-390 (1998) https://doi.org/10.1007/s002130050634
  52. Yeh, J., Barbieri, R. J., and Friedman, A. J., Nicotine and cotinine inhibit rat testes androgen biosynthesis in vitro. Steroid Biochem., 33, 627-630 (1989) https://doi.org/10.1016/0022-4731(89)90051-4