Epigallocatechin Gallate Prevents Autoimmune Diabetes Induced by Multiple Low Doses of Streptozotocin in Mice

  • Song, Eun-Kyung (Department of Microbiology & Immunology, Chonbuk national University Medical School) ;
  • Hur, Hyeon (Department of Microbiology & Immunology, Chonbuk national University Medical School) ;
  • Han, Myung-Kwan (Department of Microbiology & Immunology, Chonbuk national University Medical School)
  • Published : 2003.07.01

Abstract

Cytokines produced by immune cells infiltrating pancreatic islets have been incriminated as important mediators of $\beta$-cell destruction in insulin-dependent diabetes mellitus. In non insulin-dependent diabetes, cytokines are also associated with impaired $\beta$-cell function in high glucose condition. By the screening of various natural products blocking $\beta$-cell destruction, we have recently found that epigallocatechin gallate (EGCG) can prevent the in vitro destruction of RINm5F cell, an insulinoma cell line, that is induced by cytokines. In that study we suggested that EGCG could prevent cytokine-induced $\beta$-cell destruction by down-regulation of nitric oxide synthase (NOS) through inhibition of NF-kB activation. Here, to verify the in vivo antidiabetogenic effect of EGCG, we examined the possibility that EGCG could also prevent the experimental autoimmune diabetes induced by the treatment of multiple low doses of streptozotocin (MLD-STZ), which is recognized as an inducer of type I autoimmune diabetes. Administration of EGCG (100 mg/day/kg for 10 days) during the MLD-STZ induction of diabetes reduced the increase of blood glucose levels caused by MLD-STZ. Ex vivo analysis of $\beta$-islets showed that EGCG downregulates the MLD-STZ-induced expression of inducible NOS (iNOS). In addition, morphological examination showed that EGCG treatment ameliorated the decrease of islet mass induced by MLD-STZ. In combination these results suggest that EGCG could prevent the onset of MLD-STZ-induced diabetes by protecting pancreatic islets. Our results therefore revealed the possible therapeutic value of EGCG for the prevention of diabetes mellitus progression.

Keywords

References

  1. Ahmad, F., Khalid, P., Khan, M. M., Rastogi, A. K., and Kidwai, J. R., Insulin like activity in (-) epicatechin. Acta Diabetol. Lat., 26, 291-300 (1989) https://doi.org/10.1007/BF02624640
  2. An, N. H., Han, M. K., Um, C., Park, B. H., Park, B. J., Kim, H. K., and Kim, U. H., Significance of ecto-cyclase activity of CD38 in insulin secretion of mouse pancreatic islet cells. Biochem. Biophys. Res. Commun., 282, 781-786 (2001) https://doi.org/10.1006/bbrc.2001.4654
  3. Broadhurst, C. L., Polansky, M. M., and Anderson, R. A., Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J. Agric. Food Chem., 48, 849-852 (2000) https://doi.org/10.1021/jf9904517
  4. Han, M. K., Epigallocatechin gallate, a constituent of green tea, suppresses (Ed- confirm versus original title) cytokineinduced pancreatic b-cell damage. Exp. Mol. Med., 35, 136-139 (2003) https://doi.org/10.1038/emm.2003.19
  5. Kao, Y. H., Hiipakka, R. A., and Liao, S., Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology, 141, 980-987 (2000) https://doi.org/10.1210/en.141.3.980
  6. Katiyar, S. K. and Mukhtar, H., Tea antioxidants in cancer chemoprevention. J. Cell. Biochem. Suppl., 27, 59-67 (1997)
  7. Kolb-Bachofen, V., Epstein, S., Kiesel, U., and Kolb, H., Lowdose streptozocin-induced diabetes in mice. Electron microscopy reveals single-cell insulitis before diabetes onset. Diabetes, 37, 21-27 (1988) https://doi.org/10.2337/diabetes.37.1.21
  8. Kumar, P., Delfino, V., McShane, P., Gray, D. W., and Morris, P. J., Rapid assessment of islet cell viability by MTT assay after cold storage in different solutions. Transplant. Proc., 26, 814 (1994)
  9. Like, A. A. and Rossini, A. A., Streptozotocin-induced pancreatic insulitis: a (Ed- confirm) new model of diabetes mellitus. Science, 193, 415-417 (1976) https://doi.org/10.1126/science.180605
  10. Lukic, M. L., Stosic-Grujicic, S., and Shahin, A., Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev. Immunol., 6, 119-128 (1998) https://doi.org/10.1155/1998/92198
  11. Maedler, K., Sergeev, P., Ris, F., Oberholzer, J., Joller-Jemelka, H. I., Spinas, G. A., Kaiser, N., Halban, P. A., and Donath, M. Y., Glucose-induced beta cell production of IL-1$\beta$ contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest., 110, 851-860 (2002)
  12. Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillaire-Buys, D., Novelli, M., and Ribes, G., Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes, 47, 224-229 (1998) https://doi.org/10.2337/diabetes.47.2.224
  13. Mensah-Brown, E. P., Stosic Grujicic, S., Maksimovic, D., Jasima, A., Shahin, A., and Lukic, M. L., Downregulation of apoptosis in the target tissue prevents low-dose streptozotocininduced autoimmune diabetes. Mol. Immunol., 38, 941-946 (2002) https://doi.org/10.1016/S0161-5890(02)00021-4
  14. Nakayama, M., Suzuki, K., Toda, M., Okubo, S., Hara, Y., and Shimamura, T., Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res., 21, 289-299 (1993) https://doi.org/10.1016/0166-3542(93)90008-7
  15. Rabinovitch, A. and Suarez-Pinzon, W. L., Cytokines and their roles in pancreatic islet b-cell destruction and insulindependent diabetes mellitus. Biochem. Pharmacol., 55, 1139-1149 (1998) https://doi.org/10.1016/S0006-2952(97)00492-9
  16. Ryu, J. K., Kim, D. J., Lee, T., Kang, Y. S., Yoon, S. M., and Suh, J. K., The role of free radical in the pathogenesis of impotence in streptozotocin-induced diabetic rats. Yonsei Med. J., 44, 236-241 (2003) https://doi.org/10.3349/ymj.2003.44.2.236
  17. Stosic-Grujicic, S., Maksimovic, D., Badovinac, V., Samardzic, T., Trajkovic, V., Lukic, M., and Mostarica Stojkovic, M., Antidiabetogenic effect of pentoxifylline is associated with systemic and target tissue modulation of cytokines and nitric oxide production. J. Autoimmun., 16, 47-58 (2001) https://doi.org/10.1006/jaut.2000.0456
  18. Tannous, M., Amin, R., Popoff, M. R., Fiorentini, C., and Kowluru, A., Positive modulation by Ras of interleukin-1b-mediated nitric oxide generation in insulin-secreting clonal b (HIT-T15) cells. Biochem. Pharmacol., 62, 1459-1468 (2001) https://doi.org/10.1016/S0006-2952(01)00818-8
  19. Tsuji, K., Taminato, T., Usami, M., Ishida, H., Kitano, N., Fukumoto, H., Koh, G., Kurose, T., Yamada, Y., and Yano, H., Characteristic features of insulin secretion in the streptozotocin-induced NIDDM rat model. Metabolism, 37, 1040-1044 (1988) https://doi.org/10.1016/0026-0495(88)90064-9
  20. Yang, C. S. and Wang, Z. Y., Tea and cancer. J. Nat. Cancer Inst., 85, 1038-1049 (1993) https://doi.org/10.1093/jnci/85.13.1038