Abstract
The purpose of the present study was to investigate the bidirectional transport of 1-anilino-8-naphthalene sulfonate (ANS) using isolated rat hepatocytes. The initial uptake rate of ANS by isolated hepatocytes was determined. The uptake process of ANS was saturable, with a $K_m of 29.1\pm3.2 \mu M and V_{max} of 2.9\pm0.1$ mmol/min/mg protein. Subsequently, the initial efflux rate of ANS from isolated hepatocytes was determined by resuspending preloaded cells to 3.0% (w/v) BSA buffer. The efflux process for total ANS revealed a little saturability. The mean value of the efflux clearance was $2.2\pm0.1 \mu$ L/min/mg protein. The efflux rate of ANS from hepatocytes was markedly decreased at $4^{\circ}C$, indicating that the apparent efflux of ANS might not be attributed to the release of ANS bound to the cell surface, but to the efflux of ANS from intracellular space. The efflux clearance was furthermore corrected for the unbound intracellular ANS concentration on the basis of its binding parameters to cytosol. The relation between efflux rate and unbound ANS concentration was fitted well to the Michaelis-Menten equation with a saturable and a nonsaturable components. The $V_{max} and K_m$ values were 0.54 mmol/min/mg protein, and 10.0 $\mu$ M, respectively. Based on the comparison of the ratios of $V_{max} to K_m (V_{max}/K_m)$ corresponding to the transport clearance, the influx clearance was two times higher than the efflux clearance. Together with our preliminary studies that ATP suppression in hepatocytes substantially inhibited ANS influx rate, we concluded that the hepatic uptake of ANS is actively taken up into hepatocytes via the carrier mediated transport system.