Effect of Excipients on the Stability and Transport of Recombinant Human Epidermal Growth Factor (rhEGF) across Caco-2 Cell Monolayers

  • Kim, In-Wha (Research Institute Development of Pharmaceutical Resources, Chungbuk National University) ;
  • Yoo, Ho-Jung (Department of Pharmaceutics, College of Pharmacy, Seoul National University) ;
  • Song, Im-Sook (Department of Pharmaceutics, College of Pharmacy, Seoul National University) ;
  • Chung, Youn-Bok (Research Institute Development of Pharmaceutical Resources, Chungbuk National University) ;
  • Moon, Dong-Cheul (Research Institute Development of Pharmaceutical Resources, Chungbuk National University) ;
  • Chung, Suk-Jae (Department of Pharmaceutics, College of Pharmacy, Seoul National University) ;
  • Shim, Chang-Koo (Department of Pharmaceutics, College of Pharmacy, Seoul National University)
  • Published : 2003.04.01

Abstract

The effect of sixteen excipients on the transport of recombinant human epidermal growth factor (rhEGF) across Caco-2 cell monolayers was examined at $37^{\circ}C$. The apparent apical to basolateral (A-B) permeability ($P_{app}$) of 30 $\mu$ M rhEGF was $8.15\times 10^{-7}$ cm/sec, indicative of a poor level of absorption in the GI tract. The Papp was 1.7- and 6.3-fold greater than the $P_{app}$ in the basolateral to apical (B-A) direction and the A-B permeability of mannitol, respectively, and decreased dramatically to a negligible level at $4^{\circ}C$, consistent with a receptor mediated transcytosis of rhEGF. The stability of rhEGF was very poor, undergoing more than 85% degradation in 2 h in the transport medium at $37^{\circ}C$. A significant increase in the $P_{app}$ could be achieved by the addition of certain excipients, as exemplified by 23, 21, 20 and 16-fold increases, in the presence of sodium taurochenodeoxycholate (NaTCDC), sodium taurodeoxycholate (NaTDC), sodium glycodeoxycholate (NaGDC) and sodium laurylsulfate (SLS) (all at a concentration of 1 % w/v), respectively. A significant increase in stability could also be achieved by the addition of some of the excipients, as represented by 1 % SLS, which nearly completely stabilized the rhEGF. Unfortunately, however, an increase in the $P_{app}$ of rhEGF could not be achieved without a simultaneous and extensive decrease in the integrity of the cell membranes. Thus, more efficient excipients, that specifically enhance the permeation of rhEGF and do not alter the membrane integrity, should be pursued in order to safely enhance the permeation of rhEGF.

Keywords

References

  1. Anderberg, E. K. and Artursson, P., Epithelial transport of drugs in cell culture. VIII: Effects of sodium dodecyl sulfate on cell membrane and tight junction permeability in human intestinal epithelial (Caco-2) cells. J. Pharm. Sci., 82, 392-398 (1993) https://doi.org/10.1002/jps.2600820412
  2. Anderberg, E. K., Nystrom, C., and Artursson, P., Epithelial transport of drugs in cell culture. VII: Effect of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells. J. Pharm. Sci., 81, 879-887 (1992) https://doi.org/10.1002/jps.2600810908
  3. Artursson, P. and Karlsson, J., Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun., 175, 880-885 (1991) https://doi.org/10.1016/0006-291X(91)91647-U
  4. Augustijns, P. F., Bradshaw, T. P., Gan, L. S. L., Hendren, R. W., and Tharkler, D. R., Evidence for a polarized efflux system in Caco-2 cells capable of modulating cyclosporin A transport. Biochem. Biophys. Res. Commun., 197, 360-365 (1993) https://doi.org/10.1006/bbrc.1993.2487
  5. Carpenter, G. and Cohen, S., Epidermal growth factor (EGF). Ann. Rev. Biochem., 48, 193-216 (1979) https://doi.org/10.1146/annurev.bi.48.070179.001205
  6. Costantino, H., Carrasquillo, K. G., Cordero, R. C., Mumenthaler, M., Hsu, C. C., and Griebenow, K., Effect of excipients on the stability and structure of lyophilized recombinant human growth hormone. J. Pharm. Sci., 87, 1412-1419 (1998) https://doi.org/10.1021/js980069t
  7. Cromwell, R. M. E. M., Shahrokh, Z., Villagran, J., Nguyen, N. Y., Wellton, M., Nguyen, T. H., and Mrsny, J., Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue. J. Pharm. Sci., 85, 165-169 (1996) https://doi.org/10.1021/js950267+
  8. Haeberlin, B., Gengenbacher, T., Meinzer, A., and Fricker, G., Cyclodextrins-Useful excipients for oral peptide administration. Int. J. Pharm., 137, 103-110 (1996) https://doi.org/10.1016/0378-5173(96)04499-7
  9. Han, K., Choi, M. S., and Chung, Y. B., Site-specific degradation and transport of recombinant human epidermal growth factor (rhEGF) in the rat gastrointestinal mucosa. Int. J. Pharm., 168, 189-197 (1998) https://doi.org/10.1016/S0378-5173(98)00097-0
  10. Hidalgo, I. J., Kato, A., and Borchardt, R. T., Binding of epidermal growth factor by human colon carcinoma cell (Caco-2) monolayers. Biochem. Biophys. Res. Commun., 160, 317-324 (1989a) https://doi.org/10.1016/0006-291X(89)91658-6
  11. Hidalgo, I. J., Raub, T. J., and Borchardt, R. T., Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterol., 96, 736-749 (1989b)
  12. Knipp, G. T., Ho, N. F. H., Barsuhn, C. L., and Borchardt, R. T., Paracellular diffusion in Caco-2 cell monolayers: Effect of perturbation on the transport of hydrophilic compounds that vary in charge and size. J. Pharm. Sci., 86, 1105-1110 (1997) https://doi.org/10.1021/js9700309
  13. Konturek, P. C., Konturek, S. J., Brzozowski, T., and Ernst, H., Epidermal growth factor and transforming growth factoralpha: Role in the protection and healing of gastric mucosal lesions. Eur. J. Gastroenterol. Hepatol., 7, 933-937 (1995) https://doi.org/10.1097/00042737-199510000-00005
  14. Lillienau, J., Schteingart, C. D., and Hofmann, A. F., Physicochemical and physiological of cholylsarcosine, a potential replacement detergent for bile acid deficiency states in the small intestine. J. Clin. Invest., 89, 420-431 (1992) https://doi.org/10.1172/JCI115601
  15. Lindmark, T., Nikkila, T., and Artursson, P., Mechanism of absorption enhancement by medium chain fatty acids in intestinal epithelium Caco-2 cell monolayers. J. Pharm. Exp. Ther., 275, 958-964 (1995)
  16. Merkus, W. H. M. M., Verhoef, J. C., Romeijin, S. G., and Schipper, N. G. M., Absorption enhancing effect of cyclodextrins on intranasally administered insulin in rats. Pharm. Res., 8, 588-592 (1991) https://doi.org/10.1023/A:1015896405389
  17. Michael, S., Thole, M., Dillmann, R., Fahr, A., Drewe, J., and Fricker, G., Improvement of intestinal peptide absorption by a synthetic bile acid derivative, cholylsarcosine. Eur. J. Pharm. Sci., 10, 133-140 (2000) https://doi.org/10.1016/S0928-0987(99)00093-7
  18. Murakami, T, Kishimoto, M., Kawakita, M., and Kisaki, M., Enhanced rectal and nasal absorption of human epidermal growth factor by combined use of the absorption promotor and the synthetic polymer in rats. Eur. J. Drug. Metab. Pharmacokinet., 3, 125-131 (1991) https://doi.org/10.1007/BF03189381
  19. Murakami, T., Kawakita, H., Kishimoto, M., Higashi, Y., Amagase, H., Hayashi, T., Nojima, N., Fuwa, T., and Yata, N., Intravenous and subcutaneous pharmacokinetics and rectal bioavailability of human epidermal growth factor in the presence of absorption promotor in rats. Int. J. Pharm., 46, 9-17 (1988) https://doi.org/10.1016/0378-5173(88)90003-8
  20. Murakami, T., Misaki, M., Kojima, Y., Yamada, M., Yuki, M., Higashi, Y., Amagase, H., Fuwa, T., and Yata, N., Effect of absorption promoters on subcutaneous absorption of human epidermal growth factor in rats. J. Pharm. Sci., 82, 236-239 (1993) https://doi.org/10.1002/jps.2600820303
  21. Okada, H., Yamazaki, I., Ogawa, Y., Hirai, S., Yashiki, T., and Mima, H., Vaginal absorption of a potent luteinizing hormone releasing hormone analog (leuprolide) in rats I: absorption by various routes and absorption enhancement. J. Pharm. Sci., 71, 1367-1371 (1982) https://doi.org/10.1002/jps.2600711214
  22. Pade, V. and Stavchansky, S., Estimation of the relative contribution of transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model. Pharm. Res., 14, 1210-1215 (1997) https://doi.org/10.1023/A:1012111008617
  23. Palomino, A., Hernandez-Bernal, F., Haedo, W., Franco, S., Mas, J. A., Fernandez, J. A., Soto, G., Alonso, A., Gonzalez, T., and Lopez-Saura, P., A multicenter, randomized, doubleblind clinical trial examining the effect of oral human recombinant epidermal growth factor on the healing of duodenal ulcers. Scand. J. Gastroenterol., 35, 1016-1022 (2000) https://doi.org/10.1080/003655200451126
  24. Sai, Y., Kajita, M., Tamai, I., Wakama, J., Wakamiya, T., and Tsuji, A., Adsorptive-mediated transcytosis of a basic peptide, 001-C8 in Caco-2 cells. Pharm. Res., 15, 1305-1309 (1998) https://doi.org/10.1023/A:1011916613875
  25. Sakai, M., Imai, T., Ohtake, H., Azuma, H., and Otagiri, M., Effects of absorption enhancers on the transport on model compounds in Caco-2 cell monolayers: Assessment by confocal laser scanning microscopy. J. Pharm. Sci., 7, 779-785 (1997)
  26. Scipper, N. G. M., Romeijn, S. G., Verhoef, J. C., and Merkus, F. W. H. M., Nasal insulin delivery with dimethyl-b-cyclodextrin as an absorption enhancer in rabbits: Powder more effective than liquid formulations. Pharm. Res., 10, 682-686 (1993) https://doi.org/10.1023/A:1018999414088
  27. Shen, W. H. and Xu, R. J., Stability and distribution of orally administered epidermal growth factor in neonatal pigs. Life Sci., 63, 809-820 (1998) https://doi.org/10.1016/S0024-3205(98)00337-3
  28. Son, K. and Kwon, C., Stabilization of human epidermanl growth factor (rEGF) in aqueous formulation. Pharm. Res., 12, 451-454 (1995) https://doi.org/10.1023/A:1016225207014
  29. Tarnawski, A., Stachura, J., Krause, W. J., Douglass, T. G., and Gergely, H., Quality of gastric ulcer healing: A new, emerging concept. J. Clin. Gastrienterol., 13 (Suppl 1), S42-S47 (1991) https://doi.org/10.1097/00004836-199112001-00007
  30. Tong, W. M., Ellinger, A., Shieinin, Y., and Cross, H. S., Epidermal growth factor receptor expression in primary cultured human colorectal carcinoma cells. Br. J. Cancer, 77, 1792-1798 (1998) https://doi.org/10.1038/bjc.1998.298