Anticancer Activity of Monoterpenes and the Changes of Enzymes Activities Responsible for the Conversion of Reactive Oxygen Species

Monoterpenes의 항암작용과 활성산소 전환 효소의 활성 변화

  • Published : 2003.02.01

Abstract

The present study was undertaken to investigate the anticancer activity of monoterepenes in the animal and the cancer cell line tests. Both of the noncyclic and cyclic monoterpenes showed significant life prolonging effects on ICR mouse with abdominal cancer induced by Sarcoma 180 cells up to 67.4% and 63.5% in case of linalool and geraniol, respectively. Linalool and geraniol also exhibited very excellent cytotoxicity against L1210 leukemic cells with $IC_{50}$/ value of 0.32 $\mu\textrm{g}$/mι in 5 days culture condition. In the presence of linalool and geraniol, the generation of $O_2$$^{[-10]}$ ion were found to be increased proportionally to the cytotoxicity arisen from these monoterpenes. Furthermore, the antioxidant enzymes activities such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) responsible for the conversion of $O_2$$^{[-10]}$ ion to $H_2O$$_2$ and then to $H_2O$ augmented remarkably by linalool and geraniol. All data put together it can be postulated that monoterpenes may kill abdominal cancer cells of ICR mouse probably by activating anticancer system of the body, whereas the death of L1210 cells may be due to the detrimental attacks of reactive oxygen species (ROS) including $O_2$$^{[-10]}$ in spite of antioxidant enzymes activities to overcome the ROS attacks.

Keywords

References

  1. Hankbook of terpenoids-monoterepenoids v.1;2 Dev, S.
  2. Bioscience v.47 Plant production and mission of volatile organic compounds Lerdau, M.;Guenther, A.;Monson, R. https://doi.org/10.2307/1313152
  3. J. Ecol. v.20 Montoterpenes: their effects on ecosystem nutrient cycling White, C. S.
  4. Environ. Sci. Technol. v.27 Product formation from the gas-phase reaction of OH radical and O₃with b-phellandrene Hakola, H.;Shores, B.;Arey, J.;Atkins, R. https://doi.org/10.1021/es00039a006
  5. Am. J. Clin. Nutr. v.70 Health promoting propertoes of commom herbs Criag, W. J. https://doi.org/10.1093/ajcn/70.3.491s
  6. Plant Physiol. Biochem. in press Plant's defence and its benefits for animals and medicine: role of phenolics and terepenoids in avoiding oxygen stress Grassman, J.;Hippeli, S.;Elstner, E. F.
  7. J. Agrec. Food Chem. v.48 Radical scaveging activities of citrus essintial oils and their components Choi, H. S.;Song, H. S.;Ukeda, H. W.;Sawamura, M. https://doi.org/10.1021/jf000227d
  8. Flavour Fragr. J. v.13 Antimicrobial and antioxidant properties of some commercial essential oils Barrata, M. T.;Doman, H. J.;Deans, S. G.;Figueriedo, A. S. https://doi.org/10.1002/(SICI)1099-1026(1998070)13:4<235::AID-FFJ733>3.0.CO;2-T
  9. Natural terpenodis as messengers. A multidisciplinary study of their production, biological function, and practical applocations Harrewijn, P.;Osten, A. M.;Piron, P. G. M.
  10. J. Exp. Botany. v.53 Plant allocation tk defensive compounds: interactions between elevated CO₂and nitrogen in transgenic cotton plants Coviella, C. E.;Stipanovic, R. D.;Trumble, J. T. https://doi.org/10.1093/jexbot/53.367.323
  11. Food of chemically induced carcinogenesis by citrus liminodis Inhibition of chemically induced carcinogenesis by citrus liminoids.In: Huang, M. T. Lam, L. K. T.;Zhang, J.;Hasegawa, S.;Chut, H. A. J.;Huang, M. T.(eds);Osawa, T.(eds); Ho. C. T.(eds);Rosen, R. T.(eds)
  12. Crit. Rev. Oncogenesis. v.5 Chemoprevention of mammary cancer by monoterpenodis Crowell, P. L.;Gould, M. N. https://doi.org/10.1615/CritRevOncog.v5.i1.10
  13. Food phytochemicals for cancer prevention. Fruits and negetables Stimulation of glutathione S-transferase and inhibition of carcinogenesis in mice by celery seed oil constitutents Zheng, G. Q.;Zhang, J.;Kenney, P. M.;Lam. L. K. T.;Huang, M. T.(eds);Osawa, T.(eds);Ho, C. T.(eds);Rosen, R. T.(eds)
  14. J. Agr. Food Chem. v.42 Antioxidant constituents in sage (Salvia officinales) Cuvlier, M. E.;Bercet, C.;Richard, H. https://doi.org/10.1021/jf00039a012
  15. J. Food Sci. v.58 Antioxidant effects of some ginger constituents Kikuzaki, H.;Nakatani, N. https://doi.org/10.1111/j.1365-2621.1993.tb06194.x
  16. Pharmacol. Res. v.42 Linalool modifies the nicotinic receptor-ion channel kinetics at the mouse neurmuscular junction Re, L.;Barroci, S.;Sonnino, S.;Mecarelli, A.;Vevani, C.;Paolucci, G.;Scarpantonio, A.;Rinaldi, L.;Mosca, E. https://doi.org/10.1006/phrs.2000.0664
  17. J. Nutr. v.124 The chempreventionof cancer by mevalonate derived constituents of fruits and vegatables Elson, C. E.;Yu, S. G. https://doi.org/10.1093/jn/124.5.607
  18. J. Nutr. v.125 Suppression of mevalonate pathway activities by dietary isoprenoids: protective roles in cancer and cardiovascular disease Elson, C. E.;Yu, S. G.
  19. Leukemia. v.16 Antileukemia activity of perillyl alcohol: uncoupling apoptosis from G0/G1 arrest suggests that the primary effect of POH on Bcr/Abl-transformed cells is to induce growth arrest Clark, S. S.'Perman, S. M.;Sahim, M. B.;Jendins, G. J.;Legbede, J. A. https://doi.org/10.1038/sj.leu.2402369
  20. Nutr. Rev. v.46 d-Limonene, an anticarcinogenic terpene Showin, G. C. https://doi.org/10.1111/j.1753-4887.1988.tb05365.x
  21. N. Eng. J. Med. v.336 Cancer undefeated Bailer, J. C.;Gprmick, H. L. https://doi.org/10.1056/NEJM199705293362206
  22. Lancet v.343 Rethinking cancer Astrow, A. B. https://doi.org/10.1016/S0140-6736(94)91454-0
  23. Cancer Res. v.59 Apotosis, p53, and tumor cell sensitivity to anticancer agent Brown, J. M.;Wouters, B. G.
  24. Cancer Res. v.57 The CD95(APO-1/Fas)System mediates drug-induced apoptosis in neuroblastoma cells Fulda, S.;Sievertes, H.;Friesen, C.;Herr, I.;Debatin, K. M.
  25. Cancer Res. v.57 p53 status affects the rate of onset but not the orerall extent of doxorubicin induced cell death in rat 1 fiblroblsts conctituitvely expressing c-Myc Han, J. W.;Dionne, C. A.;Kedersha, N. L;Goldmacher, V. S.
  26. Scan. J. Clin. Invest. v.21 Isolation of leuokocytes from human blood Boyum, A. https://doi.org/10.3109/00365516809168026
  27. Cancer Chemother.Rep. v.3 Cell Screen KB. Protocol 1600 National Cancer Institute USA
  28. Free Radical Bio. Med.23 Oxidative stress hypothesis in Alzheimer disease Markesbery, W. R.
  29. J. Biol. Chem. v.244 uperoxide dismutase. An enzymatic function gor erythrocuprein (heterocuprein) McCord, J.;Fridovich, I.
  30. Biochem. Biophys. Res. Commun v.77 Comparative study of superoxide ismutase, catalase, hlutathion peroxidase levels in erythrocytes of different animals Maral. J.;Puget, K.;Michelson, A. M. https://doi.org/10.1016/S0006-291X(77)80151-4
  31. Int. Immunopharm. v.1 The effects of chinese herb formula, anticancer number one (ACNO) on NK cell activity and tumor metastasis in rat Li.;H. F.;Waisman, T.;Maimon, Y.;Shakjor, K.;Rosenne, L.;Sueviell, B. F. https://doi.org/10.1016/S1567-5769(01)00120-5
  32. Exp. Hematol. v.29 The biology og the natrual killer cells in cancer, infection and pregnancy Miller, J. S. https://doi.org/10.1016/S0301-472X(01)00696-8
  33. J. Biochem. Mol. Biol. v.32 Antiproloferative effect of rtemisia argyi extract against J774. A. cells and subcellular superoxide dismutase (SOD) activity changes Lee, T. E.;Park, S. W.;Min, T. J.
  34. Yakhak Hoeji. v.44 Cytotxicity of SD-994 from Artemisia argyi against L1210 cells with concomitant induction of antioxidant enzymes Jung, D. Y.;Ha, H. K.;Kom. A. N.;Lee, S. M.;Min, T. J.;Park, S. W.
  35. TIBS. v.21 Reactive oxygen species and programmed cell death Jacobson, M. D.
  36. Adv. Mol. Cell Biol. v.20 Reactive oxygen species and their cytotxic mechanisms Evans, M. D.;Griffith, H. R.;Lunec, J. https://doi.org/10.1016/S1569-2558(08)60271-4