References
- Hankbook of terpenoids-monoterepenoids v.1;2 Dev, S.
- Bioscience v.47 Plant production and mission of volatile organic compounds Lerdau, M.;Guenther, A.;Monson, R. https://doi.org/10.2307/1313152
- J. Ecol. v.20 Montoterpenes: their effects on ecosystem nutrient cycling White, C. S.
- Environ. Sci. Technol. v.27 Product formation from the gas-phase reaction of OH radical and O₃with b-phellandrene Hakola, H.;Shores, B.;Arey, J.;Atkins, R. https://doi.org/10.1021/es00039a006
- Am. J. Clin. Nutr. v.70 Health promoting propertoes of commom herbs Criag, W. J. https://doi.org/10.1093/ajcn/70.3.491s
- Plant Physiol. Biochem. in press Plant's defence and its benefits for animals and medicine: role of phenolics and terepenoids in avoiding oxygen stress Grassman, J.;Hippeli, S.;Elstner, E. F.
- J. Agrec. Food Chem. v.48 Radical scaveging activities of citrus essintial oils and their components Choi, H. S.;Song, H. S.;Ukeda, H. W.;Sawamura, M. https://doi.org/10.1021/jf000227d
- Flavour Fragr. J. v.13 Antimicrobial and antioxidant properties of some commercial essential oils Barrata, M. T.;Doman, H. J.;Deans, S. G.;Figueriedo, A. S. https://doi.org/10.1002/(SICI)1099-1026(1998070)13:4<235::AID-FFJ733>3.0.CO;2-T
- Natural terpenodis as messengers. A multidisciplinary study of their production, biological function, and practical applocations Harrewijn, P.;Osten, A. M.;Piron, P. G. M.
- J. Exp. Botany. v.53 Plant allocation tk defensive compounds: interactions between elevated CO₂and nitrogen in transgenic cotton plants Coviella, C. E.;Stipanovic, R. D.;Trumble, J. T. https://doi.org/10.1093/jexbot/53.367.323
- Food of chemically induced carcinogenesis by citrus liminodis Inhibition of chemically induced carcinogenesis by citrus liminoids.In: Huang, M. T. Lam, L. K. T.;Zhang, J.;Hasegawa, S.;Chut, H. A. J.;Huang, M. T.(eds);Osawa, T.(eds); Ho. C. T.(eds);Rosen, R. T.(eds)
- Crit. Rev. Oncogenesis. v.5 Chemoprevention of mammary cancer by monoterpenodis Crowell, P. L.;Gould, M. N. https://doi.org/10.1615/CritRevOncog.v5.i1.10
- Food phytochemicals for cancer prevention. Fruits and negetables Stimulation of glutathione S-transferase and inhibition of carcinogenesis in mice by celery seed oil constitutents Zheng, G. Q.;Zhang, J.;Kenney, P. M.;Lam. L. K. T.;Huang, M. T.(eds);Osawa, T.(eds);Ho, C. T.(eds);Rosen, R. T.(eds)
- J. Agr. Food Chem. v.42 Antioxidant constituents in sage (Salvia officinales) Cuvlier, M. E.;Bercet, C.;Richard, H. https://doi.org/10.1021/jf00039a012
- J. Food Sci. v.58 Antioxidant effects of some ginger constituents Kikuzaki, H.;Nakatani, N. https://doi.org/10.1111/j.1365-2621.1993.tb06194.x
- Pharmacol. Res. v.42 Linalool modifies the nicotinic receptor-ion channel kinetics at the mouse neurmuscular junction Re, L.;Barroci, S.;Sonnino, S.;Mecarelli, A.;Vevani, C.;Paolucci, G.;Scarpantonio, A.;Rinaldi, L.;Mosca, E. https://doi.org/10.1006/phrs.2000.0664
- J. Nutr. v.124 The chempreventionof cancer by mevalonate derived constituents of fruits and vegatables Elson, C. E.;Yu, S. G. https://doi.org/10.1093/jn/124.5.607
- J. Nutr. v.125 Suppression of mevalonate pathway activities by dietary isoprenoids: protective roles in cancer and cardiovascular disease Elson, C. E.;Yu, S. G.
- Leukemia. v.16 Antileukemia activity of perillyl alcohol: uncoupling apoptosis from G0/G1 arrest suggests that the primary effect of POH on Bcr/Abl-transformed cells is to induce growth arrest Clark, S. S.'Perman, S. M.;Sahim, M. B.;Jendins, G. J.;Legbede, J. A. https://doi.org/10.1038/sj.leu.2402369
- Nutr. Rev. v.46 d-Limonene, an anticarcinogenic terpene Showin, G. C. https://doi.org/10.1111/j.1753-4887.1988.tb05365.x
- N. Eng. J. Med. v.336 Cancer undefeated Bailer, J. C.;Gprmick, H. L. https://doi.org/10.1056/NEJM199705293362206
- Lancet v.343 Rethinking cancer Astrow, A. B. https://doi.org/10.1016/S0140-6736(94)91454-0
- Cancer Res. v.59 Apotosis, p53, and tumor cell sensitivity to anticancer agent Brown, J. M.;Wouters, B. G.
- Cancer Res. v.57 The CD95(APO-1/Fas)System mediates drug-induced apoptosis in neuroblastoma cells Fulda, S.;Sievertes, H.;Friesen, C.;Herr, I.;Debatin, K. M.
- Cancer Res. v.57 p53 status affects the rate of onset but not the orerall extent of doxorubicin induced cell death in rat 1 fiblroblsts conctituitvely expressing c-Myc Han, J. W.;Dionne, C. A.;Kedersha, N. L;Goldmacher, V. S.
- Scan. J. Clin. Invest. v.21 Isolation of leuokocytes from human blood Boyum, A. https://doi.org/10.3109/00365516809168026
- Cancer Chemother.Rep. v.3 Cell Screen KB. Protocol 1600 National Cancer Institute USA
- Free Radical Bio. Med.23 Oxidative stress hypothesis in Alzheimer disease Markesbery, W. R.
- J. Biol. Chem. v.244 uperoxide dismutase. An enzymatic function gor erythrocuprein (heterocuprein) McCord, J.;Fridovich, I.
- Biochem. Biophys. Res. Commun v.77 Comparative study of superoxide ismutase, catalase, hlutathion peroxidase levels in erythrocytes of different animals Maral. J.;Puget, K.;Michelson, A. M. https://doi.org/10.1016/S0006-291X(77)80151-4
- Int. Immunopharm. v.1 The effects of chinese herb formula, anticancer number one (ACNO) on NK cell activity and tumor metastasis in rat Li.;H. F.;Waisman, T.;Maimon, Y.;Shakjor, K.;Rosenne, L.;Sueviell, B. F. https://doi.org/10.1016/S1567-5769(01)00120-5
- Exp. Hematol. v.29 The biology og the natrual killer cells in cancer, infection and pregnancy Miller, J. S. https://doi.org/10.1016/S0301-472X(01)00696-8
- J. Biochem. Mol. Biol. v.32 Antiproloferative effect of rtemisia argyi extract against J774. A. cells and subcellular superoxide dismutase (SOD) activity changes Lee, T. E.;Park, S. W.;Min, T. J.
- Yakhak Hoeji. v.44 Cytotxicity of SD-994 from Artemisia argyi against L1210 cells with concomitant induction of antioxidant enzymes Jung, D. Y.;Ha, H. K.;Kom. A. N.;Lee, S. M.;Min, T. J.;Park, S. W.
- TIBS. v.21 Reactive oxygen species and programmed cell death Jacobson, M. D.
- Adv. Mol. Cell Biol. v.20 Reactive oxygen species and their cytotxic mechanisms Evans, M. D.;Griffith, H. R.;Lunec, J. https://doi.org/10.1016/S1569-2558(08)60271-4