Effect of Light Quality on Seedling Emergence, Growth and Photosynthesis of Rice

광질처리에 따른 벼 유묘 출현, 생육 및 광합성

  • Published : 2003.12.01

Abstract

White spunbonded fabrics has been utilized toy covering in rice seedling nursery. This study, therefore, was carried out to examine the effect of light quality on seedling emergence, growth, morphology, chlorophyll content and photosynthesis to get the information on the color of the fabrics. Blue, red and far-red lights were treated immediately after sowing seeds of three cultivars, Dongjinbyeo, Ilmibyeo and Daesanbyeo. Seedling emergence, growth and morphology, chlorophyll content and photosynthetic rate were measured. Seedling emergence rate of Dongjinbyeo and Daesanbyeo was low under far-red light treatment compared to those under blue and red light ones. Although the rate of Ilmibyeo was not different from three light treatments. Far-red light treatment showed similar response in plant height and leaf length, but yee light increased number of roots. Shoot and root dry weight was the highest in blue and red light treatments, respectively. Total dry weight, however, was the lowest under far-red light treatment. While chlorophyll content and photosynthetic rate of the three cultivars did not showed consistent response, those were the greatest under red light treatment, and were decreased in order of blue and far-red light treatment.

본 연구는 벼 종자의 파종 후 발아, 유묘출현 및 생육 초기에 가하여지는 광질처리가 유묘 출현, 생장, 형태, 엽록소 함량 및 광합성율에 미치는 영향을 조사하여 벼의 육묘에 이용되고 있는 부직포의 색상을 전환할 필요가 있는가를 검토하고자 실시하였으며 그 결과를 요약하면 다음과 같다. 1. 파종 직후에 가하여지는 광질처리에서 유묘출현율은 조사일 모두 일미벼에서는 광질처리간 차이가 없었다. 그러나 동진벼와 대산벼에서는 원적색광 처리에서 가장 낮았으며, 청색광과 적색광간에는 차이가 거의 없었다. 2. 파종 직후에 가하여지는 광질처리로 인하여 원적색광 처리에서 초장과 엽장이 가장 짧았던 반면, 적색광은 뿌리수를 증대시켰다. 3. 파종 직후에 가하여지는 광질처리로부터 지상부 건물중은 청색광 처리에서, 뿌리의 건물중은 적색광 처리에서 가장 많았던 반면, 지상부 및 뿌리 건물중 모두 원적색광에서 가장 적었다. 4. 엽록소 함량과 광합성율 모두 품종간에는 일정한 경향이 없었으나, 광질처리에서는 이들 모두 적색광에서 가장 높고, 청색광, 원적색광 순으로 감소하였다.

Keywords

References

  1. Amon, D.I. 1949. Copper enzymes in isolated chloroplasts: Polyphe-noloxidase in Beta vulgaris. Ptant Physiol. 24:1-15 https://doi.org/10.1104/pp.24.1.1
  2. Bukhov, N.G., l.S. Drozdova, V.V. Bondar, and A.T. Mokronosov. 1992. Blue, red and blue plus red light control of chlorophyll content and COa gas exchange in barley leaves: quantitative description of the effects of light quality and fluence rate. Physiol. Plant. 85:632-638 https://doi.org/10.1111/j.1399-3054.1992.tb04765.x
  3. Casal, J.J., V.A. Deregibus, and R.A. Sanchez. 1985. Variation in tillerdynamics and morphology in Lotium muItifIorum Lam : Vegetative and reproductive plants as affected by differences in red/farred irradiation. Annats of Botany 56:553-559
  4. Frankland, B. and R. Taylorson. 1983. Light control of seed germination. p. 428-448 In. Shropshire, Jr. and H. Mohr (eds.). Photomor-phogenesis. Encyclopedia of Plant Physiology New series V. 16A. Springer-Verlag, Berlin, Heidelberg, Germany
  5. Hong, K.P., J.Y. Kim, D.J. Kang, Y.G. Kim, W.K. Joung, G.W. Song,and Z.R. Choe. 2000. Nursing method with polypropylene spun-bonded fabric in rice. Korean J. Crop Sci. 45(23):118-122
  6. International Seed Testing Association. 1985. International rules forseed testing: Rules 1985. Seed Sci. Tech. 13:299-355
  7. Klepper, B., R.W. Rickman, and R.K. Belford. 1983. Leafand tilleridentification on wheat plants. Crop Sci. 23:1002-1004 https://doi.org/10.2135/cropsci1983.0011183X002300050045x
  8. McNellis, T.W. and X.W. Deng. 1995. Light control of seedling mor-phogenetic pattern. Plant Cell 7:1749-1761 https://doi.org/10.1105/tpc.7.11.1749
  9. Mohr, H. 1994. Coaction between pigment systems, In R.E. Kendrickand G.H.M. Kronenberg (eds.). Photomorphogenesis in plants,(2nd ed.). Kluwer Academic Pub., 101 Philip Drive, Norwell, MA02061, USA
  10. Nelson, C.J. 1996. Physiology and developmental morphology, p. 87-126. In L.E. Moser, D.R. Buxton, and M.D. Casler (eds.). Cool-season forage grasses. ASA, Inc., 677 South Segoe Road, Madison, Wisconsin, WI 53711, USA
  11. Newman, P.R. and L.E. Moser. 1988. Grass seedling emergence, morphology, and establishment as affected by planting depth. Agron. J.80:383-387 https://doi.org/10.2134/agronj1988.00021962008000030001x
  12. Nowak, J., R.M. Rudnicki, and M. Grzesik. 1996. Effect of light quality on seed germination, seedling growth and pigment content in Amaranthus caudatus and Cetosia cristata nana. J. Fruit and Ornamental Ptant Research. 4(4): 179-185
  13. Parks, B.M. and K.L. Poff. 1986. Altering the axial light gradientaffects photomorphogenesis in emerging seedlings of Zea mays L.Ptant Physiol. 81:75-80 https://doi.org/10.1104/pp.81.1.75
  14. Taiz, L. and E. Zeiger. 1991. Phytochrome and photomorphogenesis.p. 490-512. In L. Taiz and E. Zeiger (eds.). Plant Physiology. The Benjamin/Cummings Publishing Co. Inc., 390 Bridge Parkway,Redwood City, California, CA 94065, USA
  15. Woolley, J.T. and E.W. Stoller. 1978. light penetration and light-induced seed germination in soil. Plant Physiol. 61:597-600 https://doi.org/10.1104/pp.61.4.597