JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.3, NO. 4, DECEMBER, 2003 223

Application of the EKV model to the DTMOS SOI
transistor

Jean-Pierre Colinge and Jong-Tae Park

Abstract— The EKV model, a continuous model for
the MOS transistor, has been adapted to both
partially depleted SOI MOSFETs with grounded
body (GBSOI) and dynamic threshold MOS
(DTMOS) transistors. Adaptation is straightforward
and helps to understand the physics of the DTMOS.
Excellent agreement is found between the model and
the measured characteristics of GBSOI and DTMOS
devices
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I. INTRODUCTION

The Enz-Krummenacher-Vittoz (EKV) model is a
continuous model developed for MOS transistors.
Because its equations are valid in all regimes of
operation, above or below threshold, as well as in
saturation, the EKV model is highly suitable for the
simulation of analog and low-voltage circuits.[1,2] The
EKV model has successfully been adapted to inversion-
mode and accumulation-mode fully depleted SOI
transistors. [3,4] The DTMOS SOI transistor is a
partially depleted device where contact is made between
the gate and the floating body. The device is sometimes
referred to as VCBM (Voltage-Controlled Bipolar
CMOS) [5], MTCMOS (Multiple-Threshold CMOS) [6],
hybrid bipolar-MOS transistor [7,8], or DTMOS [9] and
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is mainly used for low-voltage (e.g. 0.5V) CMOS
applications.[10] Several models have been proposed for
the DTMOS.[11,12] In this Letter we propose to adapt
the EKV model to the device, which is most appropriate,
since both the model and the device are optimized for
low-voltage, low-power applications.

I1I. MODEL

The EKV model for the EKV MOSFET is described
in detail in [2]. The drain current is a continuous
function of the terminal voltages and is given by the
following expression:
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is the saturation drain voltage above threshold that
should be applied to the channel to cancel the effect of
the gate voltage and Vg, Vg and Vp are the gate, source
and drain voltages, respectively.. The body effect
coefficient is given by
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In these expressions, Vy is the potential of the device
body. All other symbols have their usual meaning. These
equations, developed for a bulk MOSFET, were applied
to grounded-body partially-depleted SOI transistors and
DTMOS devices by setting Vg equal to Vg or to Vg,
respectively. No other modification to the model was
required. As far as the DTMOS device is concerned the
model can only be used for gate voltages lower than 20,
in order for Equation (4) to admit real solutions. Since
DTMOS devices are mostly used for very low-voltage
operation [10], we will limit the scope of our study to
values of gate voltage ranging from 0 to 0.5 V. Under
these bias conditions the current NPN bipolar transistor
present in the DTMOS is negligible compared to the
MOS channel current.

I11. EXPERIMENTAL

The devices used in this experiment are long-channel,
partially depleted n-channel MOSFETs with body either
tied to source (grounded-body MOSFET, or GBSOI ) or
tied to gate (DTMOS). The processing parameters are t,,
= 8 nm, N, = 1.65x10"7cm™, W=10 um, L = 2 um. The
gate material is N polysilicon.

Figure 1 presents the threshold voltage in the GBSOI
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Fig. 1. Threshold voltage vs. gate voltage in grounded-body
SOI (GBSOI) and DTMOS devices. Solid lies represent the
EKYV model and the (*) symbols represent the measured data.

and the DTMOS device as a function of gate voltage.
Vry in the DTMOS decreases with increased gate
voltage because of bulk-like substrate effect, as predicted
by Equation 4. Figure 2 shows the current in both
GBSOI and the DTMOS device as a function of gate
voltage, for a drain voltage value of Vp=100 mV. The
value for the electron surface mobility used in the model
is 300 cm?/Vs. The same set of equations (Equations (1)
to (4)) and parameters is used for both devices. The only
difference resides in setting Vg equal to Vs = 0V 1in the
GBSOI and or to Vg = Vg in the DTMOS device. Figure
3 shows the transconductance dIy/dVg at V=100 mV
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Fig. 2. Drain current vs. gate voltage in grounded-body SOI
(GBSOI1) and DTMOS devices. Solid lies represent the EKV
mode! and the (*) symbols represent the measured data. Vp =
100 mV.
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Fig. 3. Transconductance dI/dV; vs. gate voltage in
grounded-body SOI (GBSOI) and DTMOS devices. Solid lies
represent the EKV model and the (*) symbols represent the
measured data. V= 100 mV.
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Fig. 4. dV/d(log(Ip)) (subthreshold swing) vs. gate voltage in
grounded-body SOI (GBSOI) and DTMOS devices. Solid lies
represent the EKV model and the (*) symbols represent the
measured data. Vp =100 mV.
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Fig. 5. Output characteristics of the DTMOS device. Solid
lines represent the EKV model and the (*) symbols represent
the measured data.
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Fig. 6. dV/d(log(Ip)) in GBSOI and DTMOS devices with t,,
= 3 nm; N, ranges from 10'® to 2x10'® cm™.

for both devices. Figure 4 shows dVg/d(log(Ip)) for
Vp=100 mV. Note that dV/d(log(Ip)) is equal to the
local subthreshold swing in the subthreshold regime. The
model correctly predicts the subthreshold swing value
close to the 60 mV per decade observed in the measured
data. The reduction of subthreshold swing from 80
mV/decade in the GBSOI device to 60 mV/decade in the
DTMOS is due to the reduction of threshold voltage with
increased gate bias. Figure 5 shows the simulated and
measured output characteristics of the device. Figure 6
shows dVg/d(log(Ip)) (subthreshold swing) vs. gate
voltage in GBSOI and DTMOS devices. The minimum
subthreshold
concentration in the GBSOI device but stays relatively
constant and close to 60 mV/decade in the DTMOS.

swing value increases with doping

IV. CONCLUSION

The EKV model has successfully been employed to
simulate DTMOS devices. This is done by using the
classical model for a bulk MOSFET and imposing the
substrate voltage to be equal to the gate voltage. The
reduction of threshold voltage brought about by the
increase of gate bias explains the increase of
transconductance and the reduction of subthreshold
swing observed in the DTMOS, compared to the
grounded-body SOI MOSFET.. Excellent agreement is
found between the model and experimental data for
I(Vg), subthreshold

characteristics.

transconductance and swing
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