DOI QR코드

DOI QR Code

X-ray Absorption and Photoemission Spectroscopy Study of Nd1/2A1/2Mn1-yCryO3(A=Ca, Sr)

  • Kang, J.S. (Department of Physics, The Catholic University of Korea) ;
  • Kim, J.H. (Department of Physics, The Catholic University of Korea) ;
  • Han, S.W. (Department of Physics, Gyeongsang National University) ;
  • Kim, K.H. (Department of Physics, Gyeongsang National University) ;
  • Choi, E.J. (Department of Physics, The University of Seoul) ;
  • Sekiyama, A. (Department of Material Physics, Graduate School of Engineering Science, Osaka University) ;
  • Kasai, S. (Department of Material Physics, Graduate School of Engineering Science, Osaka University) ;
  • Suga, S. (Department of Material Physics, Graduate School of Engineering Science, Osaka University) ;
  • Kimura, T. (Department of Applied Physics, University of Tokyo)
  • Published : 2003.12.01

Abstract

Valence states and electronic structures of Cr-doped $Nd_{1/2}A_{1/2}Mn_{1-y}Cr_{y}O_3$(NAMO; A=Ca, Sr) manganites have been investigated using x-ray absorption spectroscopy (XAS) and high-resolution photoemission spectroscopy (PES). All the Cr-doped NAMO systems exhibit the clear metallic Fermi edges in the Mn $e_{g}$ PES spectra near $E_{F}$. The spectral intensity at $E_{F}$ is higher for Cr-doped N $d_{l}$ 2/S $r_{l}$ 2/Mn $O_3$(NSMO) than for Cr-doped N $d_{l}$ 2/C $a_{l}$ 2/Mn $O_3$ (NCMO), reflecting the stronger metallic nature for NSMO than for NCMO. The measured Cr 2p XAS spectra are found to be very similar to that of C $r_2$ $O_3$, indicating that Cr ions in Cr-doped NAMO are in the trivalent C states ( $t^3$$_{2g}$). The Cr 2p XAS data are consistent with the Cr 3d PES spectra located at ∼1.3 eV below $E_{F}$ and having no emission near $E_{F}$.

Keywords

References

  1. J. Solid State Chem. v.130 B.Raveau;A.Maignan;C.Martin https://doi.org/10.1006/jssc.1997.7373
  2. Appl. Phys. Lett. v.71 A.Barnabe;A.Maignan;M.Hervieu;F.Damay;B.Raveau https://doi.org/10.1063/1.120540
  3. Phys. Rev. B v.60 Y.Moritomo;A.Machida;S.Mori;N.Yamamoto;A.Nakamura https://doi.org/10.1103/PhysRevB.60.9220
  4. Phys. Rev. Lett. v.83 T.Kimura;Y.Tomioka;Y.Okimoto;Y.Tokura https://doi.org/10.1103/PhysRevLett.83.3940
  5. Phys. Rev. B v.62 T.Kimura;R.Kumai;Y.Okimoto;Y.Tomioka;Y.Tokura https://doi.org/10.1103/PhysRevB.62.15021
  6. Phys. Rev. B v.59 A.Sekiyama;S.Suga;M.Fujikawa;S.Imaka;T.Iwasaki;K.Matsuda;K.V.Kaznacheyev;A.Fujimori;H.Kuwahara;Y.Tokura https://doi.org/10.1103/PhysRevB.59.15528
  7. Phys. Rev. B v.66 J.S.Kang;J.H.Kim;A.Sekiyama;S.Kasai;S.Suga;S.W.Han;K.H.Kim;T.Muro;Y.Saitoh;C.Hwang;C.G.Olson;B.J.Park;B.W.Lee;J.H.Shim;J.H.Park;B.I.Min https://doi.org/10.1103/PhysRevB.66.113105
  8. Phys. Rev. B v.68 J.S.Kang;J.H.Kim;A.Sekiyama;S.Kasai;S.Suga;S.W.Han;K.H.Kim;E.J.Choi;T.Kimura;T.Muro;Y.saitoh;C.G.Olson;J.H.Shim;B.I.Min https://doi.org/10.1103/PhysRevB.68.012410
  9. Phys. Rev. B v.51 T.Saitoh;A.E.Bocquet;T.Mizokawa;H.Namatame;A.Fujimori;M.Abbate;Y.Takeda;M.Takano https://doi.org/10.1103/PhysRevB.51.13942
  10. Phys. Rev. Lett. v.76 J.H.Park;C.T.Chen;S.W.cheong;W.Bao;F.Meigs;V.Chakarian;Y.U.Idzerda https://doi.org/10.1103/PhysRevLett.76.4215
  11. At. Data Nucl. Data Tables v.32 J.J.Yeh;I.Lindau https://doi.org/10.1016/0092-640X(85)90016-6
  12. J. Korean. Phys. Soc. v.32 S.J.Youn;B.I.Min https://doi.org/10.1016/0092-640X(85)90016-6
  13. J. Appl. Phys. v.86 O.Toulemode;F.Studer;A.Barnabe;J.B.Goedkoop https://doi.org/10.1063/1.371100
  14. Phys. Rev. B v.59 C.Theil;J.van Elp;F.Folkmann https://doi.org/10.1103/PhysRevB.59.7931
  15. Phys. Rev. B v.42 F.M.F.de Groot;J.C.Fuggle;B.T.Thole G.A.Sawatzky https://doi.org/10.1103/PhysRevB.42.5459
  16. J. Phys.: Condens. Matter v.4 G.van der Laan;I.W.Kirkman https://doi.org/10.1088/0953-8984/4/16/019
  17. Phys. Rev. Lett. v.82 J.van den Brink;D.Khomskii https://doi.org/10.1103/PhysRevLett.82.1016
  18. Physica B v.312 B.I.Min;Y.K.Jo;M.S.Kim https://doi.org/10.1016/S0921-4526(01)01238-8
  19. B. I. Min, Y.-K. Jo, M.-S. Kim, Physica B 312, 723 (2002). https://doi.org/10.1016/S0921-4526(01)01238-8