초록
본 논문은 자동 보행자 추적 시스템에 필요한 배경 이미지를 추출하는 방법과 추출되어진 배경 이미지를 이용하여 보행자를 탐지하고 적응적 신경망을 이용하여 보행자의 이동 궤적을 추적하는 시스템을 구현하였다. 본 논문은 고스트(ghost) 현상을 극복하기 위하여 모자이크 배경 이미지 추출 법으로 배경 이미지를 추출하였으며, 보행자의 탐지에 차영상 분석법을 기반으로 하여 보행자를 탐지하였다. ART2 네트워크는 프레임에 존재하는 이동 물체의 중심점을 탐지할 수 있다. 그리고, 이전 프레임에서 탐지되어진 물체의 정보를 이용하여 물체의 이동궤적을 추적할 수 있다. 제안하는 방법으로 실험한 결과 비강체(nonrigid)형태 운동을 하는 보행자를 탐지하고 그 궤적 추적에 대한 실시간 시스템 구성의 가능성에 대하여 알 수 있었다.
In this paper, we propose a method about the extraction of the pedestrian tracking trajectory in the road and we used the method of mosaic background extraction and adaptive neural network for automatic pedestrian tracking system. We used mosaic background extraction to overcome ghost phenomenon. And we detected pedestrian using differential image analysis. We used adaptive neural network for multiple pedestrian tracking that nonrigid form moving. The ART2 network is capable of detecting the masscenters of moving objects within one frame. The history of neurons positions in the sequential frames approximates the traces of the targets. The experiments done with the network in simulated environment show promising results.