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Heterogeneous Resource Management
for Adaptive Grid System

Eui-Nam Huh, and Woong-Jae Lee and Jong—Sook Lee

Abstract

Real-Time applications on Grid environment have several problems in terms of
resource management addressed as follows;(1) dynamic resource allocation to provide
QoS objectives, (2) heterogeneous resources that is different scale, or capacity in
same unit, and (3) resource availability, and resource needs. This paper describes
the techniques of resource manager (RM) handling above problems to support QoS
of dynamic real-time applications on Grid. The contributions of this paper to solve
problems are as follows: unification of dynamic resource requirements among
heterogeneous hosts, control of resources in heterogeneous environments, and
dynamic load balancing/sharing. Our heuristic allocation scheme works not only 257%
better than random, 14296 better than round robin, and 36.4% better than least load
in QoS sensitivity, but also 38.6% better than random, 28.5% better than round robin,
and 31.6% better than least load in QoS.

Key Words: Heterogeneous, distributed real-time systems, dynamic, worst case execution
time, resource manager, and QoS.
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1. Introduction

This paper describes techniques for
managing heterogeneous host resources to
support QoS of real-time Grid applications. Our
approach is based on the path paradigm. A
path-based real-time application (see [1][2])
typically consists of a detection & assessment
path, an action initiation path and an action
guidance path. The paths interact with the
environment by evaluating streams of data
from sensors, and by causing actuators to
respond (in a timely manner) to events
detected during evaluation of sensor data streams.

An overview of our approach for the
resource manager (RM) is shown in Figure 1,
The "Specification Language (Dependable
Extensible Specification Language-DXSL)"is
used to describe requirements of applications.
The DXSL also defines information about the
hosts and networks such as speed, OS type,
the number of CPUs, benchmark rate,
bandwidth, and interconnected equipment. The
"Middleware” collects QoS metrics from the
monitor, compare to the requirement, and
request or control the application and
resources, if QoS violations occur. The RM is
the brain, which makes allocation decisions to
achieve QoS objectives.

This paper focuses on the resource
management component, and discusses a new
technique for dynamic feasibility analysis on
heterogeneous resource  platforms. Most
previous work in distributed real-time systems
assumed that all system behaviors follow a
statically known pattern (see [3] [4]). When
applying the previous work to some
applications (such as shipboard AAW systems
{11 ), problems arise with respect to scalability
of analysis and modeling techniques;

furthermore, it is sometimes impossible to
obtain some of the parameters required by the
models. In contrast, DeSiDeRaTa RM (see [2],
[5]) allows the modeling of systems that work
in environments that have unknown scenarios
(such as battle environments) (see [6]) the
dynamic path paradigm is based on obtainable
parameters, since it evolved from the study of
existing computer systems and the large
granularity of the path makes it more scalable
than task allocation approaches.

Dependable Standard Middieware

. prioily. efc.
Specification Language
(DXSt}

[}

Real-Time
Operating Systems

Figure 1. QoS and Resource Management
Architecture

The new contributions of this paper are as
follows: (1) unification of dynamic resource
requirements among heterogeneous hosts, (2)
control of resources in heterogeneous environments,
and (3) dynamic load balancing/ sharing.

Section 2 shows the feasibility analysis and
laxity based RM approach with system model.
Section 3 shows the results of experiments.

Finally, Section 4 is the summary and conclusion.

2. LaxityBasedResourceAllocation

In this section, the resource management
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approach is explained. Basic steps of adaptive
resource management are follows: (1) Resource
Requirement Analysis , (2) Resource Discovery,
(3)  Resource Unification, (4) Feasibility
Analysis, and (5) Optimization,

These steps are explained in detail in the
remainder of this section. First, a mathematical
model, which is used in the detailed
explanation, is presented.

Table 1. The system resource model

SYMBOL NOTATION

% namg of application | tn path

t=%c, P) wotkload ortactical load at cycle ¢ inpath

CUPan 1L 1) ?:;kc};i:sujx-pmemge of host Hy for the application ¢ n path ot
CUPui(s t ) :h::::gf:g user-perceniage of host Hy for the apphication g m path
GURGH.D 1he CPU user-percentage of host H; sttmet

CIP(H:H the sdle-percentage of host H ot time t

MEMams(8. th Hi) the memoty usage of application & in path i on host Hy, at work load 1|
FAMA.H $he free-available- memory of host H; ot timet

Koot 14 Hi $hs. execution time of epplication ¢; in path | on host Hy ot work load tf
P L Hy the penod of epplication & m path 1 on host Hy ot work load t]
GORHD CPU Clock rate in MHz ot host Hy

SPEGmtOSH) the fixed potnt operation performence of SPEC CPU95 of host H;
SPECHRIIH) 1he floating point operation performance of SPEC CPU9S of hostH;
SPEC_RATE(H) The relative SPECCPU9 rating of host Hy

Threshold CPU(HY The CPU thieshald 4o tolerate the untfied CPU resource requirement
Threshold MEM(H) The memory threshold to tolerate the memory resource requuement

Table 1 shows the system resource model.
ajj and tl represent application and workload of
an application, respectively. Indices starting
with CUP stand for CPU usage. CIP is CPU
idle percentage of a hostt MEM and FAM
relate to memory usage. X and P are the
execution time and period of an application ajj,
respectively. CCR stands for CPU clock rate of
a host. The SPEC CPU9 host benchmark
consists of SPECint9 and SPECfp95 that
show relative performance of fixed and floating
point operations in a system. SPEC_RATE is
overall relative system rank. Indices, Threshold,
are certain amount of resource to tolerate
different amount of resource requirement.

The steps taken by RM are now explained
in detail. The resource requirement step works
as follows. QM detects QoS violation by
monitoring QoS of a path and each application
and requests additional resources based on
decisions. When a significant amount of
workload is observed, QM analyzes the latency
of each application. If aj; uses more resources
than others, or the latency of ajj is higher
than minimum QoS slack, then QM triggers
request of additional resources with another
copy of the application. This is called
"scale-up” decision. When workload is not
changed, but QoS violation occurs, QM triggers
migration of ajj running on the overloaded
host. It is called "move”decision. Therefore,
different should be
measured according to decisions. Hence, for
"move” decision, RM measures dynamic
resource requirement of CPU for the violated
application using CUPghs(aj; , tl, Hi) = X(ajj ,
tl, Hy) / Plajj , tl, Hy). For the ”scale-ug'
decision, the resource requirement is measured
by CUP ppdaj;, tl, Hy) / (number_of_replicas + 1).

resource requirements

QM request resources, CUP,, (a,, t}, HD, MEM . (a,, t], Hy)

Get the host hist, HL, including host load indices, load metrics(LM)

Calculate EMA of LM

No_of_Candidate_Host =0,

Create Linked List of HL_CPU ,

Create Linked List of HL_MEM

For (k = firs(HL(H,, 1)) ; k <= last(HL(H,, t)))
CUP,.fa, 1}, Hy) = CUP,,(a,, t], H) * SPEC_RATE(H,) fSPEC_RATE(H,);
Feasbleco(Hy, 1) = CIP(H,, t) - CUP,,{a,, ], H)) -~ Threshold_CPU(H,};

10. Feasble,radH, 1) = FAM(H,, 1) - MEM, (a,, t}, H,) - Threshold MEM(H, ),

11. IfFeasblecpelH, 1) » 0) && (Feasible,mlH, 1) > 0)

12, IcprHi )= Feasblecp(H,, 1) } * SPEC_RATE(H,) ;

WO ROV A WN

13. haadHy, )= Feasblem(Hy 1)) ;

14. Append Hy and [ep(H,,1) 0 HL_CPU ;
15. Append H, and [, (H,,t) to HL_MEM ;
18. No_of_Carddate_Host ++ ;

17 frendif 11

18. Leop 7;

19. Sort HL_CPU i descending oxder of Jpe(H, 1)

20. Sort HL_MEM in descending ozder of her{H.t)

21. If ( No_of_Candidate_Host == 0 } Return(T arget_Host = fist(HL_CPU))

22. Target Host = fist(HL_CPU) ;

23. While(true) : :

24, 1f{(Taxget Host is Alive) && (Target_Host is in top Sth percentile of HL_MEM))
25. Return (Target_Host) ;

26. Else Target_host = next(HL_CPU) ;

27. Loop23;

Figure 2. Laxity based RM Algorithm
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The resource discovery step is explained
here in detaill. Monitoring of resource
availability in dynamic environments has more
difficulties than in static environments, because
of unknown system activation. FAM(Hjt),
CIP(Hy,t), and CUP(Hy,t) are collected for all
host "k” once per second. And these load
metrics (LM) are filtered by exponential
moving average (EMA) as illustrated below for
CUP:

EMA(CUP(Hj,t)) = (l—b)*(CUP(Hj,t)) + bx
EMA(CUP(H;,t-1)), where, t is a cycle, and b
= e T (T is constant, and T=1 is used).

Each resource has various scales and
capacities even in the same unit among
heterogeneous platforms. In this step, resource
unification method is explained in detail.

Definition: HResource unification produces a
canonical form of each resource metric.

RM allocates and controls resources
accurately, if each resource is unified. Consider
CUPgpslajj, tl, Hy) as resource requirement.
To allocate the amount of the resource, RM
needs to analyze the requirement and map it
to target hosts. There are two approaches,
static and dynamic. The static approach uses
stable system information like benchmarks, or
CPU clock rate. It will decide relative amount
of system resources efficiently but inaccurately
for dynamic dynamic
approach of predicting execution time using
dynamic  system information has  high
complexity for real-time systems, as an
application uses several different resources
such as /O disk, memory, and CPU, each of
which has different performance among hosts.
Therefore, a static approach is selected as
follows. For the unification of resources, the
results of a variety of realistic SPEC CPU%
will give valuable insight into expected real

environments. The

performance among  heterogeneous  hosts.
However, no one benchmark can fully
characterize overall system performance. SPEC
CPU9% measures the performance of CPU,
memory system, and compiler code generation
by running 18 programs that are well designed
to gather their throughput. The geometric
mean is used to represent system overall
performance compared to a reference machine,
Sun-sparc-10/40MHz. This standardized set of
benchmarks (SPECint9%5 and SPECfp95) is
adaptable to the recent generation of
high-performance computing efficiently (HPC)
[7]. Hence, the following formula (1) is used to
unify CPU resource, CUPypi(ajj, tl, Hp), onto
target host, Hi from CUPgpg(ajj, tl, Hy) on
source host, Hy.

CUP ypj (ajj, tl, Hy) = CUPgpg(ajj, tl, Hg) *
SPEC_RATE(H,) / SPEC_RATE(Hy) ---- (1)

Where for all j, SPEC_RATEH) = AVG(SPECint95(H))
/Max(SPECint95(H;), SPECp95(H;)/Max(SPECIpI5(H;).

Another piece of static system information,
CCR(H;) is considered but it is inapplicable to
unification of resources, because a different
number of CPU cycles between RISC and
CISC are used, and because different VLSI
technology is used, for example, Sun
Ultral-167MHz has better performance than
SPARC5-170MHz.

Now, the feasibility analysis steps are
illustrated as  follows. The  best—host
approach(see [8]) without consideration of
resource availability does not guarantee load
balance. Therefore, this step distinguishes
feasible hosts in terms of resource availability
based on the unified resource. Furthermore, in
formula (2), the thresholds for the load
balancing process include CPU idle time and
available memory; the current CPU and
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memory usage of the process that is to be
migrated are compared against the thresholds
to determine the destination host. If a host
satisfies the condition of feasibility analysis in
formula (2) and no faults are detected on the
host, then it is a candidate host.

FeasibleCPU(H;t) = CIP(H;t) - CUPypay;, tl,
H;) > Threshold_CPU(H;)&

FeasibleMEM(H;t) = FAM(H;t) - MEMhs(aj;,
tl, Hi) > Threshold MEM(H;) -----------~ (2)

Finally, the optimization step works as
follows. Optimized resources give a good
information RM for efficient allocation and
reservation.

Definition: Laxity is an available amount of
unified resources after allocation of requested
resources delivered from QM for the violated
applications.

FeasibleCPU(H;,t) is the available amount of
resources after allocation of aij. Unifying the
FeasibleCPU(H;t) gives the optimized resource
availability. This optimization is an important
QoS factor. Formula (3) and (4) show the
Laxity of CPU, CPU(H;t), and Laxity of
memory, MEM(H;,t).

LPU(Hit) = FeasibleCPU(H;,t)*SPEC_RATE(H;)

Based on optimized resources, the resource
allocation schemes, max-laxity host{MLH)
shown in formula (5), and min-laxity host(m/f)
shown in formula (6) are carefully considered.
Other approaches such as random(ra),
round-robin(rr), and least-load host(///h) have
been tested and compared with our allocation

schemes of resource optimization. But the least
load approach (resources are not unified)
shown in formula (7) does not guarantee QoS
requirement as the available resources in the
supply space do not correspond to resource
requirement in demand space.

MLFEMax;(CPUH; 1) and Top;(MEM(H;t), 50)
———————————————————————————————————— (5)

mife ming(CPU(H;,t) and Bot;( MEM(H; t),50)
———————————————————————————————————— ©)
1h = Max(CPIH0* Wy, + FAMH % Winer)
———————————————————————————————————— (7)

where Top;( MEM(H;jt), 50) : the host "i" is
in top 50th percentile in laxity of memory,
Bot{( MEM(H;,t), 50) : the host "i” is in bottom
50th percentile in laxity of memory, and
chu+Wmem =1, for all i.

In our approach, the other resource
requirements like network bandwidth, I/O disk
are applicable in a similar way. The final
decision is made based on the laxity of each
resource using heuristic algorithm: find a host
that has maximum CPU; if the host is in top
50th percentile of the host list (sorted by
MEM(H;,t); select the host; if not, examine
the next host that has maximum CPU(Ht).
Instead of resource allocation, control of
heterogeneous resources is an efficient way to
provide quick resource management. Dynamic
CPU proportion change on Linux using the
Quasar scheduler [9](10] and priority handling
on NT and Solaris are implemented in our
scheme.,

Furthermore, for accurate allocation, the RM
should consider not only load balance based on
resource availability, but also a measure of
system contention called slowdown factor.
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3. Experiment

We have wused DynBench[ll] as an
assessment tool for DeSiDeRaTa. It uses an
identical scenario for experiments. The
experimental system parameters and
heterogeneous environment are as follows: 1
Linux Pentium 200mhz, 1 NT Pentium-III
500mhz, 2 NT Pentium-II 400MHz, 2 NT
Pentium 200MHz, 2 Solaris Sparc-5 170MHz, 2
Solaris Ultra-1 167MHz, 1 SunOS on
ULTRAIO 300MHz, and 100Mhz Fast Ethernet.

Average Mermory Usage on UWra§ Avrage Marnavy Usage on Ui 1
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ton e

tacical lend
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Figure 3. The Dynamic measures of
monitored resource requirement

First experiment monitors and analyzes
resource requirements corresponding to step 1
in section 2. Second experiment measures the

unification approaches requirements corresponding
to step 3 in section 2. Third experiment
compares different allocation schemes
corresponding to step 5 in section 2. Detail
experiments are presented in the remainder of
this section.

Experiment 1 shown in Figure 3 describes
the measures of variance of execution time
with different methods and different periods in
(c), and variance of memory among hosts in
(@) and (b). The three different monitoring
techniques, getrusage() (GRU) system call,
reading process table(PT) and ps(PSU)
command, are used. From the experiments (c),
the variance of execution time measured by
reading P7 is high, and is dependent on the
monitor cycle time as the period for accessing
PT cannot exactly cover the range of process
execution time. It is impossible to collect exact
resource usage of a process at a particular
instant of time. However, the GRU system
call shows accurate process resource usage in
The
exponential moving average (EMA) of each
method is used for filtering. The maximum
difference of memory usage by the evaluate
and decide application(ED) on two different
hosts is 48Kbytes (from (a) and (b) in Figure 3).
Hence, Threshold MEM(Hj,t) and Threshold
_CPU(Hk,t) are necessary components in
candidate host. The variances of
memory requirement of applications are
measured by zero.

The second experiment described in Figure 4
shows the difference between observed
resource usage and unified resource estimated
by SPEC_RATE and Clock_Rate(CCR). For
example, the execution time is collected on
Pentium-200MHz, and we multiply the
measured execution time and SPEC_RATE

terms of variance of execution time.

finding
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/CCR of the target host, PentiumIlI-500MHz.
Next we experiment with the same scenario on
PentiumlII-500MHz to observe actual execution
time of the process to compare with previous
estimated execution time experimented on NT
in Figure 4 (a). The difference between unified
resource by CCR and the observed resource
is 86 on NT, and 35% on Sun. The
difference of unified resource by SPEC_RATE
has 1% on NT, and 11% on Sun.

The Companson of Unified Resource on
NT workstation

—+— ghserved resource
req.

-=- unified resoure reg.
by Spec_Rate
Unified resource

_req.by Clock Rate

(a) Pertium (200MMX)vs Pertinm- 1l (S00Miz)

Comparison of Unified Resource on Unix
Workstation

—e—observed
resgurce req.

-3 Unified
resource reg.
by Spec_Rate
unified resource
req. by
Clock_Rate

(b) Uhtra- 1Y 300Mkz2) vy Ultra-1 (140Mhz)

Figure 4. Resource Unification by
SPEC_RATE and Clock_Rate

Experiment 3 proposed three measurements
- QoS violation rate (QVR), QoS Sensitivity
(QSS), and QoS (to compare QoS
characteristics by different allocation decision
algorithm as shown in Figure 5). The QVR is
the number of violations within 2 minutes by
increasing workload. QSS is the amount of

workload to trigger second violation after the
first violation. QoS is the latency of a path
improved by first allocation. This experiment
shows clearly that the approach that ignores
heterogeneity (proposed by Ravindran[8]) is
much worse than our scheme in terms of
QVR, QSS, and QoS. Our Max scheme
improves 26.4% better in QoS, 36.4% better in
QSS, and 60% less in QVR than his
approach. Our scheme for various
heterogeneous hosts that use SPEC_RATE
outperforms in efficient manner than the clock
rate approach.

QoS Sensitivity(Inverse)
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robin
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Figure 5. Comparison of Resource
Management Schemes
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4. ConclusionandFutureStudy

This paper presents 5 solutions of resource
allocation for dynamic real-time systems. Our
"Max” scheme works not only 257% better
than rg 142% than rr; 36.4% better than , and
200% better than the "min” scheme in @SS
but also 38.6% better than rg 285% better
than rz; 31.6% better than , and 20.9% better
than "min” scheme in @S Controlling
heterogeneous resources using CPU proportion
change and priority change is useful for the
server programs. The efficiency of resource
allocation in terms of QoS objectives for
scalable and moveable clients is better than
that of the control. Also, heterogeneous
network resource monitoring and allocation,
and the decision mechanism between allocation
and control is an important issue in providing
QoS requirements.
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