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Graphical Approaches for Planning
Experiments—High Resolution Linear Graphs
for Three-Level Designs

Sang-Heon Lee*

Abstract

The lack of consideration for statistical properties in Taguchi’s three-level linear
graphs is rectified. We propose a new set of linear graphs for the three-level
orthogonal arrays according to the maximum resolution criterion. In the presence of
two-factor interactions however, the serious bias of all the estimated effects as well
as the estimated variance shows that these designs should not be employed. The

various alternative designs are discussed.
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1. Introduction

Most of the underlying physical mechanisms advocated by Taguchi (1980, 1987)
are such that the effects of factors could be approximated by an additive model.
Taguchi’s strategy for approximating a response surface by a polynomial model is to
choose the response and control factors continuously to avoid the need to allow for
interactions. That is, Taguchi’'s designs fundamentally sacrifice informations about
interactions to reduce the number of trials. In doing so, he recommends taking more
than two-levels for continuous valued factors to study quadratic effects but ignores
interactions.

A very limited number of interactions can be studied in some orthogonal arrays.
The only possible standard orthogonal arrays which allow estimation of interactions
are L18, L'36, L54, and which are originally due to Burman (1946) and Seiden
(1954). The frequent recommendation of using an L18 by Taguchi is based on the
ability to estimate interaction effect. However, the L18 orthogonal array only allows
estimation of only one interaction effect between factors in the first column
(two-level factor) and second column (one of the seven three-level factors). Likewise,
the L’36 allows three interactions between the fourth column (one of the thirteen
three-level factors) and first three columns (two-level factors), and L54 allows only
one interaction between the first column (two-level factors) and second column (one
of the twenty five three-level factors). Each of the other interactions is partially
confounded with several main effects.

The study of interaction is the essential subject of fractional factorial plans. The
presence or absence of interactions can have profound impacts in product or process
design. It is necessary to construct plans which permit uncorrelated estimation of all
main effects as well as orthogonal estimation of two-factor interaction effects.

Orthogonal array approach however, is performed poorly when an experimenter
considers models with second-order components. For the 2n-m fractional factorial
designs by orthogonal arrays if quadratic terms exist, the inability to estimate
quadratic coefficients does not bias either the first~order effects or two-factor

interaction effects since they bias only constant.
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However unlike two-level disigns, 3" fractional factorial designs by orthogonal
arrays fail to obtain unbiased estimates for all coefficients. Most of the three-level
fractional factorials, 3" designs, by orthogonal arrays are Latin square type desins.
Those are Latin square, Graeco-Latin square, and hyper-Graeco-Latin square
designs. For example, an Lg which is equivalent to the 3%? fractional factorial design
is obtained from a Graeco-Latin square. As discussed in detail by Hunter(1985)
however, the fractional factorials from Latin square type designs seriously bias all
the estimated effects as well as the estimate of variance if two-factor interaction
effects exist.

Orthogonal array approach in planning fractional factorial designs are not all
misleading. The orthogonal array approach is basically different from the response
surface methodology(RSM). The components of RSM assume that an underlying
model include system curvature and interactions so that an experimenter design
accordingly. The orthogonal approach often benefits from a main effect model to
determine the best settings of factors that is most likely to produce product or
process improvement, but not estimating the model. The main emphasis is that an
experimenter must choose a right tool among experimental designs carefully by
considering relative importance differs in different circumstances and tailor the design
to fit the required experimental situations.

This paper provides improved linear graphs for the three-level designs under the

framework of Taguchi’s basic approach and describe better alternatives. By doing so,

we have drawn not only improved Taguchi’s three-level orthogonal array’s linear

graphs but also on those of the better alternatives. In section 2, we present the high

resolution linear graphs for the three-level designs as opposed to Taguchi’s in an

uncritical way, following to the orthogonal array approaches for the two-level

designs. In section 3, we briefly overview better alternatives.

2. High Resolution Linear Graphs for Three-Level Designs

2.1 L27(3%) Orthogonal Array

A three-level fractional factorial orthogonal array with 3n rows, where n=2,34,...,
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can be construted in a similar way to the two-level fractional arrangements(Lee,
2001). The main difference between two-level and three-level orthogonal array is the
two column appearance in three-level orthogonal array for the two-factor interaction

between two factors.

The axb, which denotes two-factor interactions between factors a and b, are
assigned into two columns, ab and abz, with two degrees of freedom each since
there are two orthogonal contrasts for each set of three planes; a+b=0,1,2(mod 3)
and a@+2b=0,1,2(mod 3). The three-factor interactions axbxc among three factors a,b
and ¢ are assigned to four columns, abc, abzc, abc® and ab’c® with a total of eight
degrees of freedom. Those four components are corresponding to sets of hyperplanes;
a+rb+c=0,1,2, a+2b+c=0,1,2, atb+2¢c=0,1,2, and a+2b+2c=0,1,2, respectively in modulo-3
arithmetic.

After rearranging the entries 0,1 and 2 in a systematic pattern, we can match the

labels of the columns notation with the column numbers of the L27(313) orthogonal
array. Thus the generators of the L27(313) orthogonal array. Thus the generators of

the L27(313) orthogonal array are d=ab, e=ab’® f=ac, g=acz, h=bc, i=abc, j=abzcz,

k=bc’, 1=ab’c and m=abc®. The confounding patterns are as follows:

I,=a+bd +be’ + off + cg® de” + fg* + hi® + hiZ + i+ kI* + km® + Im’
ly=b+ad’ +ae+ch’+ ck+de+fio+f°+ gi>+ gm®+ Wk + il® + jm®

I,=c+af +ag+bh® +bk+di’+dm+ej>+ el + fg+ hk +im + ji

. 2 . 2 2 . Ly
d+ab+ae2+be+a2+cm +ﬁ2+fk +gh2+g12+hl *rzm2+1k'2

ld=
l,=c+ab’+ad+bd+ ¢+ clt+ e+ fmi+ gi® v gk’ + hm® v ik® + jI°
2 .2 .2 2 . .
Ij=f+ac+ag +bi"+bl+cg+di +dk+eh” + em+ hm+ i+ jk
2 .2 2 .2 . .
lg=g+ac +af + b + bm + ¢of + dh” + dl + ei” + ek + hk + ik + jm
.2 . 2 2 2 ..
Ip=h+ai” +a +bc+bk +ck+dg+d + e +em +fm+ gkt y

l=itah+ai +bf+bl>+cd+cm+dm>+ eg+ ek’ +fl+ gk + hj
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l]=j+ah2+ai+bg+bm2+ce+cl+df+dk2+elZ+fk+gm*hi

I, =k +am +al® + bc® + bh +ch + dff + dj + eg’ + ei + fj + gi + Im

ll=l+ak+am2+b12+bi+ce2+cj+dg2+ah+ej+fi+gh+lm

m

I =m+am >+ al + bg>+ bj+cd+ci+di+ef +eh+fm+ gtk

Table 1 lists all the possible highest resolution that can be obtained for the

various requirements set.

For an experiment with more than four main factors, neither the main effects nor

the two-factor interactions can be estimated without confoundings.

for example, the resulting confounding patterns for five factors A, B, C, D and E

are as follows:

Table 1: Possible Highest Resolution by Lo7

For the case 3,

Requirements Set
Case Possible Highest
Number Number of Maximum Number of Resolution
Main Factors 2-Factor Interactions

1 3 3 A%
2 4 3

3 5 4 m
4 6,7 3 m
5 89 2 m
6 10,11 i m
7 12,13 0 m
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I,=a+ bd + be’ + de
2
lpy=b+ad +ae + de

lc=c
2
ly=d+ab + age” + be

e e+ab2+ad+bd.

~
il

Four factors, A, B, D and E are confounded with three components of two-factor
interactions, while factor C is not confounded with any. component of a two-factor
interaction. Hence the resulting design is of resolution II. For the case 2, four main
factors with up to three two-factor interactions, linear graphs in Figure 1 can be
used in constructing a design of resolution IV. Note that a solid node indicates a
resolution IV column and a hollow node indicates a resolution I column.

For example, consider an experiment with four three-level factors A, B, C, D and
three two-factor interactions AB, AC, AD. We can obtain a resolution IV design by
choosing a linear graph in Figure 1(b). By assigning factors A, B, C and D to nodes
1, 2, 5 and 9 respectively, the generator of the design is D=ABC which generate a
design of resolution IV. For case 1, three main factors with up to three two-factor
interactions, we have to choose linear graph in Figure 1 (a) and use only triangular

part to obtain a resolution V design.

3.4
1 6.7 5
3,4 6,7
8,10
2 5 ° 000
8. 11 111 1
@ OOO
g 10 12 13

(a) (b)
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(c) (d)

Figure 1. High Resolution Linear Graphs for Lz7

Note that the same design by Lg; for studying the main effects of 13 three-level
factors could be obtained by constructing a 3% design. Addeman’s(1962) orthogonal
main effect plan for the 38 experiment in 27 trials is differ only slightly from the Lo

)y is another class of array

orthogonal array. An almost orthogonal array L’2/(3
with 27 runs used by Taguchi (1987). This array is constructed with Ly by adding
nine columns {column 14-22) which are mutually orthogonal and are also orthogonal
to columns 1, 11, 12 and 13, so that two separate sources of class could be analyzed

by using columns 1-13 and columns 1, 11, 12, and 13-22.

2.2 L181(340) Orthogonal Array

The four-factor interaction axbxcxd has a total of 16 degrees of freedom and 8
components, abcd, abzcd, abczd, abcdz, abzczd, abzcdz, abczdz, and abzczdz,
corresponding to sets of hyperplanes; a+b+c+d = 0,1,2, a+2b+c+d = 0,1,2, a+b+2c+d
= 0,1,2, a+tb+ct2d = 0,1,2, a+2b+2c+td = 0,1,2, a+2b+c+2d = 0,12, a+b+2c+2d= 0,1,2,
a+2b+2c+2d = 0,1,2, respectively in modulo-3 arithmetic.

Thus the generators of the Lgi (3 orthogonal array are e=ab, f=ab2, g=ac, h=acz,
i=bc, j=abc, k=ab202, l=bcz, m=abzc, n=abcz, o=ad, p=ad2, q=bd, r=abd, s=ab2d2,
t=bd?, u=ab’d, v=abd®, w=cd, x=acd, y=aczd2, z=bed, A=abced, B=ab’d*d®, C=bc’d?,
D=ab’cd, E=abc’d’, F=cd’, G=ac’d, H=acd’ I=bc’d, J=abc’d, K=ab’cd’, L=bcd’,
M=ab’c’d and N=abcd®. For an experiment with more than eight factors, neither the
main effects nor the two-factor interactions can be estimated without confoundings.

The possible high resolution that can be obtained for the various requirements set
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is listed in Table 2. A set of thirteen high resolution linear graphs with three to
eight factors and up to seven two-factor interactions for an L81 orthogonal array is
listed in figure 2. We suggest the following procedures to be effective for using

three-level high resolution linear graphs.

s Make a complete list for requirements set which are to be estimated.

e Select the smallest orthogonal array that could accommodate a plan

e Seclect the high resolution linear graph corresponding to the chosen orthogonal
array, which can accommodate the required form of two-factor interactions.

e Assign to the solid-nodes of the high resolution linear graph those factors that
appear most often in the list of the requirements set and whose interactions
are appeared in the reguirements set.

e Assign to the free nodes (solid-nodes if available) or free lines of the high
resolution linear graph those factors whose interactions are not assigned yet.

* Finally, assign the remaining factors to the free nodes (solid-nodes if available)

and lines.

Suppose we want to plan an experimental design that has 7 three-level factors
and 7 two-factor interactions among them. The requirements set in this case study
is {A,B,C,D,E F,G,AB,AC,ADAE,BC,BD,CD}. The total number of degrees of
freedom is 7+7x2 = 21. It turns out that L27 is insufficient. So Lg is the appropriate
orthogonal array.

Now note that the desired interaction form is consisted of all interactions among
four factors A, B, C and D and one additional interaction AE, which interacts to one
of the four interacting factors. In the Ls; high resolution linear graphs, we have two
choices to select a linear graph which could be implemented in a design of resolution
IV with satisfying the required conditions of design. Those are two high resolution
linear graphs in Figures 2 (b) and (c).

If we choose a former linear graph (Figure 2 (b)), first assign interacting four
factors A,B,C,D to the solid-nodes 1, 2, 5 and 14 in rectangular-shape part. The
interaction effects AB, AC, AD, BC, BD and CD are then represented columns (3,4),
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(6,7), (15,16), (8,11), (17,20) and (23,32), respectively. Now we are ready to assign
factor E because the interaction AE is not assigned yet. We assigned the factor E to
the solid- node representing column 26. The interaction, AE, is then represented by
columns 27 and 28. The remaining factors F and G can be assigned arbitrarily to the
remaining nodes but we assign two of the three remaining solid-nodes in order to
obtain a design of resolution IV. Those nodes are 9 and 18. The generators of this
design are E=ABC, FFACD and G=BCD.

Note that, likewise in the two-level orthogonal arrays, our collection of high
resolution linear graphs in 81-runs design are exhaustive to accommodate all design

cases listed in Table 2.

Table 2: Possible Highest Resolution by Ls;

Case Requirements Set possible
Number Ngmber of Maximum Numbgr of highe;t
Main Factors 2-Factor Interactions resolution
1 4 6 A
2 5 7 v
3 6 7 v
4 78 7 I\
5 9,10 15 m
6 11,12 14 m
7 13,14 13 m
8 15,16 12 m
9 17,18 11 m
10 19,20 10 m
11 21,22 9 m
12 23,24 8 m
13 25,26 7 m
14 217,28 6 m
15 29,30 5 m
16 31,32 4 m
17 33,34 3 m
18 35,36 2 m
19 37,38 1 m
20 39,40 0 m
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Figure 2. High Resolution Linear Graphs for Ls
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Figure 2. {Continued)

3. Conclusion

Taguchi’s linear graphs for the three—level designs have only some limited partial
informations for the interaction relationships among columns in the orthogonal arrays.
Under the Taguchi's (1987, Volume I} framework for constructing three- level

designs, we improved his linear graphs by adding highest possible resolution. The
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orthogonal approach however only concentrates on identifying the factors that reflect
most variability. The source of variability is not of primary interest whether it is due
to average effects, interactions or curvature. In addition to knowing which factors
affect the most variability, it is necessary to learn in which way they contribute.

The response surface methodology is very effective to be able to identify which
interactions occur so that the underlying causes can be better understood. In the
context of the robust parameter designs, the following features are most recommended
for the second-order designs compared to Box and Drapper(1975)

* Ensure the fitting of a full second degree equations in all the factors including

quadratic and interactions terms.

Provide an economical experimentation. A minimum number of experimental

runs is required.

Ensure easy calculation of coefficients and analysis.

Allow easy generative designs.

In addition, the particular design characteristics are required depending on the
experimental circumstances. In general, central composite designs and Box- Behnken
designs can be used extensively for the continuous-valued factors. Small composite
and hybrid designs are recommended for experimental situations in which cost is an

important concern.
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