Parameterising a Microplankton Model

  • Lee, Jae-Young (OCEAN laboratory, Research Institute of Oceanography, School of Earth and Environmental Sciences, Seoul National University) ;
  • Tett, Paul (School of Life Sciences, Napier University) ;
  • Kim, Kyung-Ryeul (OCEAN laboratory, Research Institute of Oceanography, School of Earth and Environmental Sciences, Seoul National University)
  • 발행 : 2003.12.01

초록

This paper describes and assesses the parameterisation of MP, the microplankton compartment of the carbon­nitrogen microplankton­detritus model. The compartment is 'the microbial loop in a box' and includes pelagic bacteria and protozoa as well as phytoplankton. The paper presents equations and parameter values for the autotroph and microheterotroph components of the microplankton. Equations and parameter values for the microplankton as a whole are derived on the assumption of a constant 'heterotroph fraction'. The autotroph equations of MP allow variation in the ratios of nutrient elements to carbon, and are largely those of the 'cell­quota, threshold­limitation' algal growth model, which can deal with potential control of growth by several nutrients and light. The heterotroph equations, in contrast, assume a constant elemental composition. Nitrogen is used as the limiting nutrient in most of the model description, and is special in that MP links chlorophyll concentration to the autotroph nitrogen quota.

키워드

참고문헌

  1. Mar. Ecol. Prog. Ser. v.10 The ecologica role of water-column microbes in the sea Azam,F.;T.Fenchel;J.G.Field;J.S.Gray;L.A.Meyer Reil;F.Thingstad https://doi.org/10.3354/meps010257
  2. J. Sea Res. v.33 The European Refional Seas Ecosystem Model, a complex marine ecosystem model Baretta,J.W.;W.Ebenhoh;P.Ruardij https://doi.org/10.1016/0077-7579(95)90047-0
  3. Int. Rev. Hydrobio. v.81 On the theory of photosynthesis and growth in phytoplankton. Part Ⅰ:light limitation and constant temperature Baumert,H. https://doi.org/10.1002/iroh.19960810113
  4. Ecology v.49 Population growth resopnse of Isochrysis galband to a variable nitrate environment Caperon,J. https://doi.org/10.2307/1936538
  5. Deep Sea Res. v.19 Nitrogen-limited growth of marine phytoplankton-Ⅰ.Changes in population characteristics with steady-state growth rate Caperon,J.;J.Meyer
  6. Deep Sea Res. v.19 Nitrogen-limited growpth of marine phytoplankton-Ⅱ.Uptake kinetics and their role in nutrient limited growth of phytoplankton Caperon,J.;J.Meyer
  7. Mar. Ecol. Prog. Ser. v.24 Nutrient cycling in a microflagellate food chain.2.Population dynamics and carbon cycling Caron,D.A.;J.C.Goldman;O.K.Andersen;M.R.Dennett https://doi.org/10.3354/meps024243
  8. Limnol. Oceanogr. v.35 Carbon utilisation by the omnivorous flagellate Paraphysomonas imperforata Caron,D.A.;J.C.Goldman;M.R.Dennett https://doi.org/10.4319/lo.1990.35.1.0192
  9. Limnol. Oceanogr. v.40 An empirical model of the phytoplankton chlorophyll:carbon ratio-the conversion factor between productivity and growth rate Cloern,J.E.;C.Grenz;L.Vidergar Lucas https://doi.org/10.4319/lo.1995.40.7.1313
  10. J. Plank. Res. v.16 In situ bacterial production and growth-yield measured by thymidine,leucine and fractionated dark oxygen-uptake Daneri,G.;B.Riemann;P.J.L.Williams https://doi.org/10.1093/plankt/16.2.105
  11. J. Plank. Res. v.17 Predator prey interactions between Isochrysis galbana and Oxyrrhis marine.Ⅲ. Mathematical modelling of predation and nutrient regeneration Davidson,K.;A.Cunningham;K.J.Flynn https://doi.org/10.1093/plankt/17.3.465
  12. Deep-Sea Res. Ⅱ. v.43 A new coupled, one-dimensional biological-physical model for the upper ocean;applications to the JGOFS Bermuda Atlantic Time-series Study(BATS)site Doney,S.C.;D.M.Glover;R.G.Najjar https://doi.org/10.1016/0967-0645(95)00104-2
  13. J. Mar. Biol. Ass. U.K. v.54 The nutrient status of algal cells in continuous culture Droop,M.R. https://doi.org/10.1017/S002531540005760X
  14. J. Mar. Biol. Ass. U.K. v.55 The nutrient status of algal cells in continuous culture Droop,M.R.
  15. J. Mar. Biol. Ass. U.K. v.55 The nutrient status of algal cells in batch culture Droop,M.R. https://doi.org/10.1017/S0025315400017240
  16. J. Exp. Mar. Bio. Eco. v.39 On the definition of X and of Q in the Cell Quota model Droop,M.R. https://doi.org/10.1016/0022-0981(79)90014-5
  17. Bot. Mar. v.26 25years of algal growth kinetics-a personal view Droop,M.R. https://doi.org/10.1515/botm.1983.26.3.99
  18. J. Mar. Biol. Ass. U.K. v.62 Light and nutrient status of algal cells Droop,M.R.;M.J.Mickelson;J.M.Scott;M.F.Turner https://doi.org/10.1017/S0025315400057362
  19. Hydrobiol. v.26 Les differentes categories de plantcton Dussart,B.M. https://doi.org/10.1007/BF00142255
  20. U.S. Fish. Wild. Ser. Bull. v.70 Temperature and phytoplankton growth in the sea. Eppley,R.W.
  21. In Advance in Microbiology of the Sea Kinetics of phytoplankton growth Eppley,R.W.;D.H.Strickland;Droop,M.R.(ed.);Ferguson Wood,E.J.(ed.)
  22. J. Mar. Res. v.48 A nitrogen-based model of plankton dynamics in the oceanic mixed layer Fasham,M.J.R.;H.W.Ducklow;S.M.McKelvie https://doi.org/10.1357/002224090784984678
  23. Micro. Ecol. v.9 Respiration rates in heterotrophic,free-living protozoa Fenchel,T.;B.J.Finaly https://doi.org/10.1007/BF02015125
  24. Phil. Trans. Royal Soc. v.352 Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton Flynn,K.J.;M.J.R.Fasham,;C.R.Hipkin https://doi.org/10.1098/rstb.1997.0145
  25. J. Plank. Res. v.19 A short version of the ammonium-nitrate interaction model Flynn,K.J.;M.J.R.Fasham https://doi.org/10.1093/plankt/19.12.1881
  26. New Phytol. v.118 Tansley Review No. 30.The phytoplanktonic ways of life. Fogg,G.E. https://doi.org/10.1111/j.1469-8137.1991.tb00974.x
  27. J. Phycol. v.5 Phosphorus content and rate of growth in the diatom Cyclotella nana and Thalassiosira fluviatillis Fuhs,G.W. https://doi.org/10.1111/j.1529-8817.1969.tb02620.x
  28. The grazing and growth rates of some marine Protozoa measured in batch and continuous culture with particular reference to the heterotrophic dinoflagellate Oxyrrhis marinea. Ph D thesis Fuller,A.K.R.
  29. Limnol. Oceanogr, v.42 Biomass distribution in marine planktonic communities Gasol,J.M.;P.A.del Giorgio;C.M.Duarte https://doi.org/10.4319/lo.1997.42.6.1353
  30. Mar. Ecol. Prog. Ser. v.148 A dynamic model of phytoplankton growth and acclimation:resopnses of the balance growth rate and the chlorophyll a:carbon ratio to light,nutrient-limitation and tempereture Geider,R.K.;H.L.MacIntyre;T.M.Kana https://doi.org/10.3354/meps148187
  31. Limnol. Oceanogr. v.43 A dynamic regulatory model of phytoplanktonic acclimation to light,nutrients and temperature Geider,R.K.;H.L.MacIntyre;T.M.Kana https://doi.org/10.4319/lo.1998.43.4.0679
  32. Mar. Biol. v.109 Ammonium regeneration and carbon utilization by marine bacteria grown on mixed substrates Goldman,J.C.;M.R.Dennett https://doi.org/10.1007/BF01313502
  33. J. Mar. Biol. Ass. U.K. v.63 Changes in the major dihydroporphyrin plankton pigments during the spring bloom of phytoplankton in two Scottish sea-lochs Gowen,R.J.;P.Tett;B.J.B.Wood https://doi.org/10.1017/S0025315400049778
  34. Mar.Biol. v.114 Prey size selection,feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale Hansen,P.J. https://doi.org/10.1007/BF00349535
  35. J. Plank. Res. v.9 f-Ratio and its relationship to ambient nitrate concentration in coastal waters Harrison,W.G.;T.Platt;M.R.Lewis https://doi.org/10.1093/plankt/9.1.235
  36. Population Biology:concepts and models Hastings,A.
  37. Mar. Biol. v.47 Studies on the functional role of tintinnids in the Southern Californian Bight Ⅰ.Grazing and growth rates in laboratory cultures Heinbokel,J.F. https://doi.org/10.1007/BF00395638
  38. Mar. Ecol. Prog. Ser. v.14 Vertical distribution and partitioning of organic carbon in mixed,frontal and stratified waters of the English Channel Hollogan,P.M.;P.J.I.Williams;D.Purdie;R.P.Harris
  39. Limnol. Oceanogr. v.26 Nonselective nonsaturated feeding by three calanoid copepod species in the Labrador Sea. Huntley,M. https://doi.org/10.4319/lo.1981.26.5.0831
  40. Phil. Trans. Royal Soc. v.A340 Towards water quality models Huthnance,J.M.;J.I.Allen;A.M.Davies;D.J.Hydes;I.D.James;J.E.Jones;R.K.Lowry;T.J.Moffat;A.J.Pomroy;R.Proctor
  41. Southampton Oceanography Centre Report,5 The biogeochemistry of nitrogen in the southern North Sea:the development of a mathematical model based on the results of the NERC-North Sea Programme surveys 1988 and 1989 Hydes,D.J.;Kelly Gerreyn,B.A.;Prandle,D.;Proctor,R.;Thomson,S.
  42. Proceedings of the scientific symposium on the North Sea Quality Status Report 1993 An analysis of the nitrogen flow through the southern North Sea from a coupled 2D biogeochemical model(Ebeltoft,Denmark,18-21 April 1994) Hydes,D.J.;B.A.Kelly Gerreyn,;R.Proctor;S.Thompson
  43. Limnol. Oceanogr. v.21 Mathematical formulation of the relationship between phosynthesis and light for phytoplankton Jassby,A.D.;T.Platt https://doi.org/10.4319/lo.1976.21.4.0540
  44. J. Mar. Biol. Ass. v.58 Investigation of a nutrient-growth model using a continuous culture of natural phytoplankton Jones,K.J.;P.Tett;A.C.Wallins;B.J.B.Wood https://doi.org/10.1017/S0025315400056861
  45. Biol. Bull. v.123 Rate of phosphorus uptake by Phaedoctylum tricornutum Kuenzler,E.J.;B.H.Ketchum https://doi.org/10.2307/1539510
  46. Mar. Biol. v.36 Carbon and nitrogen metabolism by Monochrysis lutheri:Measurement of growth-rate-dependent respiration rates Laws,E.;J.Caperon https://doi.org/10.1007/BF00388431
  47. Limnol. Oceanogr. v.25 Nutrient-and light-limited growth of Thalassiosira fluviatillis in continuous culture,with implications for phytoplankton growth in the sea Laws,E.A.;T.T.Bannister https://doi.org/10.4319/lo.1980.25.3.0457
  48. Journal of Phycology v.14 Studies of carbon and nitrogen metabolism by three marine phytoplankton species in nitrate-limited continuous culture Laws,E.T.;D.C.L.Wong https://doi.org/10.1111/j.1529-8817.1978.tb02460.x
  49. Deep-Sea Res. v.36 Turbulence and the diffusive layer around small organisms Lazier,J.R.N.;K.H.Mann https://doi.org/10.1016/0198-0149(89)90068-X
  50. Bot. Mar. v.24 Problems in modelling the photosynthesis-light relationship for phytoplankton Lederman,T.C.;P.Tett https://doi.org/10.1515/botm.1981.24.3.125
  51. Ophelia v.41 Plankton and nutrient dynamics in marine waters Legendre,L.;F.Rassoulzadegan
  52. J. Phycol. v.29 Physiological acclimation of marine phytoplankton to different nitrogen sources Levasseur,M.;P.A.Thompson;P.J.Harrison https://doi.org/10.1111/j.0022-3646.1993.00587.x
  53. J. Exp. Bot. v.4 Phosphorus utilization by Asterionella formosa Hass Mackereth,F.J. https://doi.org/10.1093/jxb/4.3.296
  54. J. Exp. Mar. Biol. Ecol. v.102 Ammonium thresholds for simultaneous uptake of ammonium and nitrate by oyster-pond algae Maestrini,S.Y.;J.M.Robert;J.W.Leftley;Y.Collos https://doi.org/10.1016/0022-0981(86)90127-9
  55. In Phytoplankton Pigments in Oceanography Comparison between spectrophotmetric,fluorometric and HPLC methods for chlorophyll analysis Mantoura,R.F.C.(ed.);S.W.Jeffrey(ed.),C.A.Llewellyn;H.Claustre;C.E.Morales;Wright,S.W.(ed.)
  56. Mar. Biol. v.19 Silicon and the ecology of marine plankton diatoms.Ⅰ.Thalassiosira pseudonana(Cyclotella nana)grown in a chemostat with silicate as a limiting nutrient Paasche,E. https://doi.org/10.1007/BF00353582
  57. J. Phycol. v.9 A continuous culture study of phosphate uptake,growth rate and polyphosphate in Scenedesmus sp. Rhee,G.Y.
  58. J. Phycol. v.10 Phosphate uptake under nitrate limitation by Scenedesmus sp. and its ecological implications Rhee,G.Y.
  59. In Advances in Aquatic Microbiology Continuous culture in phytoplankton ecology Rhee,G.Y.;Droop,M.R.(ed.);Jannasch,H.W.(ed.)
  60. New Phytol. v.93 Adaptation of unicellular algae to irradiance:an analysis of strategies Richardson,K.;J.Beardall;J.A.Raven https://doi.org/10.1111/j.1469-8137.1983.tb03422.x
  61. Mar. Ecol. Prog. Ser. v.168 Spatial heterogeneity in the structure of the planktonic food web in the North Sea Richardson,K.;T.G.Nielsen;F.B.Pedersen;J.P.Heiman;B.Lkkegard;H.Kaas https://doi.org/10.3354/meps168197
  62. Limnol. Oceanogr. v.34 A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum Sakshaug,E.;K.Andresen;D.A.Kiefer https://doi.org/10.4319/lo.1989.34.1.0198
  63. Quantum yield of phytoplankton photo-synthesis in relation to nutrient status.Ph.D.thesis Setiapermana,D.
  64. Sea microbes Sieburth,J.M.
  65. Journal of Marine Systems v.26 A depth resolving numerical model of physically forced microbiology at the European shelf dege Smith,C.L.;P.Tett https://doi.org/10.1016/S0924-7963(00)00010-5
  66. Limnol. Oceanogr. v.36 Absorption fluorescence and quantum yield for growth in nitrogen limited Dunaliella tertiolecta Sosik,H.M.;B.G.Mitchell https://doi.org/10.4319/lo.1991.36.5.0910
  67. J. Phycol. v.30 Effects of temperature on growth,light absorption,and quantum yield in Dunaliella tertiolecta(Chlorophycease) Sosik,H.M.;B.G.Mitchell https://doi.org/10.1111/j.0022-3646.1994.00833.x
  68. J. Plank. Res. v.15 Seasonal succession in the pelagic ecosystem of the North Atlantic and the utilization of nitrogen Taylor,A.H.;D.S.Harbour;R.P.Harris;P.H.Burkhill;E.S.Edwards https://doi.org/10.1093/plankt/15.8.875
  69. Mar. Ecol. Prog. Ser. v.59 A steady-state analysis of the mocrobial loop in stratified systems Taylor,A.H.;I.Joint https://doi.org/10.3354/meps059001
  70. Soc. Gen. Micro. Sym. v.41 Modelling the growth and distribution of marine microplankton(Ecology of Microbial Communities,St Andrews,Scotland) Tett,P.
  71. In Light and Life in the Sea The Photic Zone Tett,P.;Herring,P.J.(ed.);Campbell,A.K.(ed.);Whitefield,M.(ed.);Maddock,L.(ed.)
  72. A three layer vertical and microbiological processes model for shelf seas Tett,P.
  73. Handbook of Laboratory Model Systems for Microbial Ecosystems Cell quota models and planktonic primary production Tett,P.;M.R.Droop;Wimpenny,J.W.T.(ed.)
  74. Algae and the Aquatic Environment(Contributions in honor of J.W.G.Lund,F.R.S.) Microplankton dynamics in an enclosed coastal water column in summer Tett,P.;A.Edwards;B.Grantham;K.Jones;M.Turner;Round,F.E.(ed.)
  75. Vie et Milieu v.44 Designing a simple microbiological physical model for a coastal embayment Tett,P.;C.Grenz
  76. J. Mar. Bio. Ass. v.65 The Redfield ratio and phytoplankton growth rate Tett,P.;S.I.Heaney;M.R.Droop https://doi.org/10.1017/S0025315400050566
  77. Phil. Trans. Royal Soc. London v.A340 Biological consequences of tidal stirring gradients in the North Sea Tett,P.;I.Joint;D.Purdie;M.Baars;S.Oosterhuis;G.Daneri;F.Nannah;D.K.Mills;D.Plummer;A.Pomroy;A.W.Walne;H.J.Witte
  78. Reihe Z:Interdisziplinare Znetrumsberichte v.2 Modelling benthic-pelagic coupling in the North Sea(New Challenges for North Sea Research-20 years after FLEX '76,Hamburg,21-23 Oct 1996)).Berichte aus dem Zentrum f$\{u}$r Meeres-und Klimaforschung Tett,P.;C.Smith
  79. Ophelia v.42 Observations and simulations of hydrography,nutrients and plankton in the southern North Sea Tett,P.;A.Walne https://doi.org/10.1080/00785326.1995.10431514
  80. J. Mar. Sys. v.25 From biogeochemical to ecological models of marine microplankton Tett,P.;H.Wilson https://doi.org/10.1016/S0924-7963(00)00032-4
  81. Kieler Meeresforchungen v.5 Incorporation of microheterotrophic processes into the classical paradigm of the plankton food web Williams,P.J.I.
  82. British Ecological Society Comparing models for phytoplankton seasonal cycles in the north east Atlantic(abstract)(Winter and Annual General Meeting,Warwick) Wilson,H.C.;P.Tett
  83. Limnol. Oceanogr. v.33 Coupling between ammonium uptake and incorporation in a marine diatom:experiments with the short-lived radiosotope $^13N$ Zehr,J.P.;P.G.Falkowski;J.Fowler;D.G.Capone https://doi.org/10.4319/lo.1988.33.4.0518