Electron Microscopical Property of Transglutaminase Added Milk

트랜스글루타미나제를 첨가한 우유의 전자현미경적 특성

  • 문정한 (전남대학교 식품영양학과, 생활과학연구소) ;
  • 홍윤호 (전남대학교 식품영양학과, 생활과학연구소)
  • Published : 2003.12.01

Abstract

Raw skim milk and colloidal calcium phosphate-free skim milk were treated with microbial transglutaminase (TGase), ultracentrifuged at varying rates and were observed to contain textural properties using a scanning electron microscope (SEM). Skim milk showed irregular signs of conformation at lower centrifugal rate, and associated regular (10,000 ${\times}$g) and thin with broad holes (20,000 ${\times}$g). The associated texture became thick and irregular (40,000 ${\times}$g), and fine particles were regularly associated (100,000 ${\times}$g). When skim milk was incubated for 1 hr with TGase, casein micelles aggregated and broadened as centrifugation rate increased. When skim milk was incubated for 8 hrs with TGase, casein micelles associated to large widened aggregates, and were associated regularly which then became irregular (100,000 ${\times}$g). When colloidal calcium phosphate-free skim milk incubated for 1 hr with TGase showed no sediment, the milk incubated for 8 hrs with TGase associated together, yielding broadened and regular layers as the centrifugation rate increased. It is assumed that such phenomena could be caused by protein crosslinking reaction with TGase and conformational change of casein molecules, as well as dependencies on reaction time, temperature and ultracentrifugation rate.

원유를 이용하여 탈지유와 콜로이드성 인산칼슘이 제거된 우유에 TGase를 첨가하여 반응시킨 다음 초고속 원심분리를 실시하여 침전된 카제인 입자들을 동결건조하여 조직의 성상을 주사 전자 현미경을 이용해 관찰, 비교하였다. 탈지유와 탈지유에 TGase를 처리하고 1시간 반응시킨 경우에서 카제인 입자들의 성상은 초고속 원심분리 속도 증가에 따라 불규칙적으로 혹은 규칙적으로 변형되면서 입자들이 넓어지다가 다시 규칙적으로 카제인 입자들이 회합층을 이루었다. 탈지유에 TGase를 처리하고 8시간 반응시킨 경우 카제인 입자들의 성상은 불규칙적으로 모여서 덩어리 형태를 나타내다가 다시 규칙적으로 회합하였으며, 원심분리 속도의(20,000∼40,000 ${\times}$g)증가에 따라 조직이 넓어지면서 층을 이루다가 다시 불규칙으로 회합하여 분산되는 현상이 관찰되었다. 콜로이드성 인산칼슘이 제거된 우유와 콜로이드성 인산칼슘이 제거된 우유에 TGase를 첨가하여 1시간 반응시킨 경우에서는 카제인 입자들이 거의 침전하지 않았다. 반면에 8시간 반응시킨 경우에서는 카제인 입자들이 초고속 원심분리 속도 증가에 따라 모여서 회합층을 이루다가 점차적으로 조직이 넓어지는 현상을 관찰할 수 있었다. 결론적으로 주사 전자 현미경에 의한 카제인 입자들의 조직 성상은 TGase를 처리하고 반응시간과 초고속 원심분리 속도를 증가했을때 입자들이 모여 불규칙하게 분산되거나 혹은 넓게 회합층을 형성하였다. 이러한 현상은 TGase가 우유 단백질에 작용하여 교차결합을 촉매함으로써 단백질의 분자구조가 변형되어 카제인 입자들의 조직이 다양하게 나타난 것으로 생각된다.

Keywords

References

  1. Babiker, E. E. (2000) Effect of transglutaminase treat-ment on the functional properties of native and chymo-trypsin-digested soy protein. Food Chem. 70, 139-145 https://doi.org/10.1016/S0308-8146(99)00231-9
  2. Flanagan, J. and FitzGerald, R. J. (2003a) Functional pro-perties of Bacillus proteinase hydrolysates of sodium caseinate incubated with transglutaminase pre- and post-hydrolysis. Int. Dairy J. 13, 135-143 https://doi.org/10.1016/S0958-6946(02)00149-8
  3. FIanagan, J. and FitzGerald, R. J. (2003b) Characteri sation and quantification of the reactions catalysed by transglutaminase using the o-phthaldialdehyde reagent. Nahrung 47, 207-212 https://doi.org/10.1002/food.200390047
  4. Flanagan, J., Gunning, Y., and FitzGerald, R. J. (2003) Effect of cross-linking with transglutaminase on the heat stability and some functional characteristics of sodium caseinate. Food Res. Int. 36, 267-274 https://doi.org/10.1016/S0963-9969(02)00168-0
  5. Han, X. Q. and Damodaran, S. (1996) Thermodynamic compatibility substrate proteins affects their cross-linking by transglutaminase. J. Agric. Food Chem. 44, 1211-1217 https://doi.org/10.1021/jf950569x
  6. Ikura, K., Sasaki, R., and Motoki, M. (1992) Use of transglutaminase in quality improvement and processing of food proteins. Com. Agric. & Food Chem. 2, 389-487
  7. Lauber, S., Henle, T., and Klostermeyer, H. (2000) Relationship between the crosslmking of caseins by transglutaminase and the gel strength of yoghurt. Eur. Food Res. Technol. 210, 305-309 https://doi.org/10.1007/s002170050554
  8. Lauber, S., Noack, I., Klostermeyer, H., and Henle, T. (2001) Oligomerization of $\beta$-lactoglobulin by microbial transglutaminase during high pressure treatment. Eur. Food Res. Technol 213, 246-247 https://doi.org/10.1007/s002170100368
  9. Lauber, S., Noack, I., Klostermeyer, H., and Henle, T. (2001) Stability of microbial transglutaminase to high pressure treatment. Eur. FoodRes. Technol. 213, 273-276 https://doi.org/10.1007/s002170100381
  10. Lee, D. S., Matsumoto, S., Matsumura, Y., and Mori, T. (2002) Identification ofthe $\varepsilon-(\gamma$-glutamyl) lysine cross-linking sites in $\alpha$-lactalbumin polymerized by mammalian and microbial transglutaminases. J. Agric. Food Chem. 50, 7412-7419 https://doi.org/10.1021/jf020529a
  11. Lorenzen, P. C., Schlimme, E., and Roos, N. (1998) Crosslinking of sodium caseinate by a microbial trans-glutaminase. Nahrung 42, 151-154 https://doi.org/10.1002/(SICI)1521-3803(199808)42:03/04<151::AID-FOOD151>3.3.CO;2-5
  12. Lorenzen, P. C. and Schlimme, E. (1998) Propenies and potential fields of application of transglutaminase prepa-rations in dairying. Bulletin of the IDF 332, 47-53
  13. Motoki, M. and Segura, K. (1998) Transglutaminase and its uses for food processing. Trends in Food Sci. & Technol. 9, 204-210 https://doi.org/10.1016/S0924-2244(98)00038-7
  14. Nielsen, P. M. (1995) Reactions and potential industrial applications of transglutaminase. Review of literature and patents. Food Biotechnol. 9, 119-156 https://doi.org/10.1080/08905439509549889
  15. O'sullivan, M. M., Kelly, A. L., and Fox, P. F. (2002) Influence of transglutaminase treatment on some physico-chemical properties of milk. J. Dairy Res. 69, 433-442
  16. Shanna, R., Zakora, M., and Qvist, K. B. (2002) Sus-ceptibility of an industrial $\alpha$-lactalbumin concentrate to cross-linking by microbial transglutaminase. Int. Dairy J. 12, 1005-1012 https://doi.org/10.1016/S0958-6946(02)00122-X
  17. Schorsch, C., Carrie, H., Clark, A. H., and Norton, I. T. (2000) Cross-linking casein micelles by a microbial transglutaminase conditions for formation of transgluta-minase - induced gels. Int. Dairy J. 10, 519-528 https://doi.org/10.1016/S0958-6946(00)00052-2
  18. Walsh, D. J., Cleary, D., Mccarthy, E., Murphy, S., and FitzGerald, R. J. (2003) Modification of the nitrogen solubility properties of soy protein isolate following proteolysis and transglutaminase cross-linking. Food Res. Int. 36, 677-683 https://doi.org/10.1016/S0963-9969(03)00017-6