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Abstract

In this paper we introduce the concepts on retrievability, separability and connectedness of fuzzy submachines, which
generalize those of crisp submachines. And also we generalize crisp primary submachines to those with fuzziness,
from which we obtain the decomposition theorem of fuzzy submachines.

Key words : Retrievable fuzzy submachines,

1. Introduction

Fuzzy automata theory has been developed by many
researchers, since Wee [1] introduced the concept of
fuzzy automata following Zadeh [2,3]. Algebraic tech-
niques to study fuzzy automata were given by D.S.
Malik, J.N. Mordeson and M.K. Sen [4,56]. In particular,
in [5] they introduced the notion of subsystems of a
fuzzy finite state machine in order to consider states as
fuzzy.

The fuzzification of state sets is required for applica-
tions in many areas. For example, S.Y. Hwang et al. [7]
and K. Peeva [8] constructed fuzzy acceptors with state
sets as fuzzy, and applied them to syntactic pattern
recognition.

In this paper we give the structure of fuzzy
submachines with states as fuzzy, and generalize the
concepts of retrievability and connectedness of crisp
submachines to those of fuzzy submachines and investi
gate the corresponding properties. And also we give the
primary fuzzy submachines, from which we obtain the
decomposition theorem of fuzzy submachines.

Before going further, we introduce the following
definitions and notations. Let A be a fuzzy subset of Q,
with the membership #4:Q—1[0,1]. The set

suppA={x=@Q | ua(x)>0} is called the support of A.

If B is also a fuzzy subset of Q, then the fuzzy sets
AUB,ANB are defined as

# aus(0)=pA()Vep(x), VxeQ,

¢ ans(x)= pa() App(x), VreQ.
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Strongly connected fuzzy submachines, Primary fuzzy submachines,

When we want to exhibit an element x=@ that
typically belongs to a fuzzy set A, we may demand its
membership value to be greater than some threshold
a<=(0,1].

The ordinary set of such elements is the a—cut A,
of A,

A,={xeQ | ra(x) > a}. It is easily checked that the
following properties hold:

(AUB),=A,UB, (ANB),=A,N B,

A is said to be included in B, denoted by A C B, if
for each x, p4(x) < pp(x).

If A,and B, are disjoint for all «, then we say that
fuzzy sets A and B are disjoint.

And if a-cuts A,\B, define a fuzzy set, the it is
denoted by A\ B.

A fuzzy finite state machine is a triple M=(Q, X, y),
where @ and X are finite nonempty sets and # is a
membership of some fuzzy subsets of @ XXX @, ie,
g QxXXxQ—[0,1]. Let X denote the set of all
words of elements of X of finite length. @ is called the
set of state and X is called the set of input symbols. Let
A denote the empty word in X" and |x| denote the
length of |x|, Vx=X'.

2. Properties on fuzzy submachines

Let @ and X be finite nonempty sets, and let X°
denote the set of all words of elements of X of finite
length. If g is a membership of some fuzzy subset of
QxXxQ, ie, p: @xXxQ— [0,1], a triple M=(Q,

X,¢) is a fuzzy finite state machine. Define 4" :
ExXxQ ~ [0,1] by
1 if g=p
£ (g, A,p) =
0 if g#p

749



HX ¥ XsAMAHEE =X 2003, Vol 13, No. 6

and

# (g, xa,p) = VA{e"(q,x, YA\u(r,a,p) | r=Q},
Vp,qeQ,VxeX' VacX.

Then

e a, 3.0 = Vi (g, x, DN\’ (7,3, D r=Q},
Vp,qeQ,Vx,yeX".

This means that a fuzzy subset ¢ of Q@ xXx@ can
be naturally extended to a fuzzy subset g* of @xX"
x @ under max-min operation.

To simplify the notation, we write “x>a”, which
means that x is greater than or equal to « if @> 0, and
X is positive if a=0.

Definition 2.1. Let X=(Q,X,u) be a fuzzy finite
state machine. Let p,g=@. p is called an immediate «o
-successor of g if there exists =X such that
(g, a,p)>a, 0<a<l. And p is called an e« —-successor
of g if there exists x€X* such that g'(q,x,0) >a,
0<ea<l.

If M=(Q,X,y) is a fuzzy finite state machine, g is
a fuzzy subset of @ XX x@. From the definition 2.1, we
note that "p is an immediate e« -successor of ¢” means
that there exists a=X such that (g,a,p) €@ xX x@
is an element of a-cut of g, 0<a<1. In fuzzy set
theory, we usually consider the support of z as O-cut.
From the meaning, we naturally define O-successors as
follows:

p is said to be an immediate O-successor of ¢ if there
exists a€X such that ux(q,a,p)>0. In the same ways,
we have the definition of 0-successors, which are simply
called successors.

Let M=(Q, X,r) be a fuzzy finite state machine, and
let g Q. We denote by S°(q) the set of all «
-successor of g. And if 7C@Q, the set of all «

-successors of T in @, denoted by S3(7), is defined to

be the set S5(T) = (U {S%q)lgeT}. This is in fact a
mapping of the set of all subsets of @ into itself. If no
confusion arises, then we write S“(7) for S5( 7).

The structure of fuzzy finite state machine is applied
in many areas, for example in fuzzy automata [9,10] and
syntactic pattern recognition [7,8]. But the crisp state set
restricts the areas of application. S.Y. Hwang et al. [7]
and K. Peeva [8] defined fuzzy acceptors with the
structure of fuzzy finite state machine, and applied to
syntactic pattern recognitions. But the states and
transitions are modified as fuzzy. So we need to define
fuzzy submachines, which is submachines with states as
fuzzy.

Now we give the definition of fuzzy submachines,
which generalize the crisp submachines of a fuzzy finite
state machine given by D.S. Malik, JN. Mordeson and
MXK. Sen [6].
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Definition 2.2. Let M= (Q, X,¢) be a fuzzy finite
state machine, and let 7,C Q. Let N,=(T,, X, ¢ T“),

where p " isa fuzzy subset of T,xXxT,. The fuzzy
finite state machine N, is called an e« -submachine of
M if

D plr.xor=e" ad (2) S§«THCT,

Moreover, if T is a fuzzy subset of @ with T, as «
-cuts, then N=(Q, T,X,u7) is called a fuzzy subma-
chine of M if for each @, N, is an e« —submachine of
M.

To show that the definition 2.2 is the natural
generalization of crisp submachine, let M= (Q, X,u) be
a fuzzy finite state machine, and let T be a crisp subset
of Q. We consider the submachine N=(T, X,xz") of M
defined by D.S. Malik, J.N. Mordeson and M.K. Sen [6],
ie, u#lrx.r=n", and SHL(T)CT. We note that if
each e -cut T, of T is itself, then

T T
p=plrpx.r=plr, x.r,=u
and
S& (TN =S4 “(T)CSYD C T=T..

Thus the fuzzy submachine (@, T,X,x7) can be
considered as the generalized form of submachine of
M=(Q X,1). S% will be simply denoted by S,.

LetN=(QF.X,u"), P=(Q, T, X,u") be two fuzzy
submachines of M= (Q,X,x), and let T.F be fuzzy
subsets of states @ with TCF. Then

)2 T = ] TAX<T, — 3 Fa/XxFa) | ToAXAT, = #F"i T.eXr T s
and

SEUT) =S (T)C T, Ve
Thus P is also called a fuzzy submachine of N.

Remark 2.3. In the definition 2.2, we defined a fuzzy
submachine N= (Q, T, X, #"), which satisfies the con-
ditions related to the @ -cuts 7,. If we note that the
state set @ is finite, then the image Im(T) of fuzzy set
T is finite. Thus it is natural to restrict our interests
only to the @ —cuts T,, e Im(T) . Throughout this paper,
the a-cuts of fuzzy sets will be considered only for
asIm(T), if no confusion arises.

The fuzzy finite state machine with no proper

submachine is exactly strongly connected [6]. This
property can be extended to fuzzy submachines.
Definition 24. Let N=(Q,F, X, ¢") be a fuzzy

submachine of M= (Q, X,x), and let P=(Q,G, X, 1%
be a fuzzy submachine of N. P is called a proper fuzzy
submachine of N if G#¢ and G=+F.
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If F.(G are crisp sets, then P is exactly a proper crisp
submachine of M defined in [6].

Definition 25. Let N=(Q,F, X, ¢") be a fuzzy sub-
machine of M. Then N is called strongly connected if
peSTF9(g) for Vp,ge suppF.

From this definition we can easily check that if N is
strongly connected, then it must be of the form
(Q,aly, X, /z"l"), where I, is the indicator function of
ACQ.

Theorem 26. Let N= (Q,F,X,¢") be a fuzzy sub
machine of M= (Q, X,r). Then N is strongly connect
ed if and only if N has no proper fuzzy submachines.

Progf. Suppose N has a proper fuzzy submachine
P=(0Q,G, X, 1%. Then there exists some ¢ such that
G, is a nonempty proper subset of F,. Let peF,\G,
and ¢=G,. Since P is a fuzzy submachine of N,
SR C GryC G,, which implies peS' 79(g),
that is, N is not strongly connected. Conversely, we
assume that N is not strongly connected. Then there
exist p,gesuppF such that peS' 79(g). Define a
fuzzy subset G of @ by wg= F(@)Ig-ra,, Where I is
the indicator function of A. Then it can be easily

checked that P= (@, G, X, #°) is a fuzzy submachine of
N, and is proper. This completes the proof.

Corollary 2.7 [6]. Let M= (Q,X,x) be a fuzzy finite
state machine. Then M is strongly connected if and only
if M has no proper submachines.

The retrievable fuzzy finite state machine can be
decomposed to strongly connected submachines [6]. This
decomposition property can be extended to fuzzy
submachines.

Definition 2.8. Let N=(Q,F, X, 1) be a fuzzy sub

machine of M= (@, X,x). N is said to be retrievable if
Vo, gesuppF, pS' F9(g) if and only if geS!7F#
(».

Theorem 29. let N=(Q.F X, ") be a fuzzy sub

machine of M= (Q,X,u). Then N is retrievable if and
only if N is the disjoint union of strongly connected
fuzzy submachines.

Proqgf. Suppose N is retrievable, and let gesuppF. If we
let F,=Fglg »o(,, then (Q,FL,‘X,pF‘) is clearly a
fuzzy submachine of N. If 7,s=S' "?(g), then by the
retrievability of N, ¢S T2(»H NS 79(s) . Moreover,
F(g)=F(»)=F(s). Thus reS8! "), that is, (Q,F,,
X, u F‘) is a strongly connected fuzzy submachine.
And F=U ,capmrF,. Now to show that N can be
expressed as the disjoint union of F,'s, let any two
F,=F(q)Ig rogy, Fy=Fq)Ig vy be
given, and assume that F, F, =+ ¢. Then there exists

fuzzy sets

an element
aeS'" g NS,

By the retrievahility of N ¢,¢ 8" 79(a), and
F(g)=F(¢)=F(a). Since (Q F,,X,u"") is strongly
connected, F,=F,. Hence N is the disjoint union of
distinct, strongly connected fuzzy submachines (@, F,,
X, ¢ Foy |

Conversely, let N=U"% P, P, = (Q, G, X, 1%) be
the disjoint union of strongly connected fuzzy subma-

chines P, Let p,qssuppU%.,G;, and assume that

peS V9 Then there exists some j such that

(U \GX@ = Gla), thus peS' (g c(G) gro.

And also p, g suppG;. Since P; is strongly connected,

1-G, 1-(U% |G,
g S (ﬂ)(p). Hence g€ S (U5 16

that N= U"_P; is retrievable.

(p), which implies

Corollary 2.10 [6]. Let M= (Q,X,ux) be a fuzzy finite
state machine. Then M is retrievable if and only if M is
the disjoint union of strongly connected submachines.

Let N=(Q F X, u7) be a fuzzy submachine of
M=(Q X,1). And let g=@Q. In the proof of Theorem
29, a fuzzy subset F, of F is denoted by F,=
F(@) I gr-rog,. (Q,FU,X,;;F”) is called a singly gener-
ated fuzzy submachine of N.

Definition 2.11. Let N= (Q,F, X, 1) be a fuzzy sub-

machine of M= (Q,X,x). And let P=(Q, A, X, u*)
be a fuzzy submachine of N. Then P is called a primary
fuzzy submachine of N if

(1) there exists ¢g=@ such that A=F,+¢,
(2)if ACF,, seQ, then A=F,.

Every fuzzy finite state machine can be decomposed
to primary submachines [61. This decomposition property
can be extended to fuzzy submachines as follows.

Theorem 2.12. Let N=(Q,F, X, u") be a fuzzy sub-
machine of M. And Let P={P,,P,--,P,} be the set of

all distinct primary fuzzy submachines P; = (Q,A;, X,
pA‘) of N. Then

(1) N= I_L:JlPi,
(2) N=+ LTJ P; for any j={1,2,, n}.
=1

Proof. (1). Let gesuppF. Then either F,=P or there
exists _q’EsuppF\Sl_F(")(q) such that F,CF,=A;
for some i, which implies that F,C L:J1Ai' If we note

U FIy,

q& suppF

that F= and F(@ly<F, then
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Fc \J A Hence N= \JP. . Let A,=F,, and

let G= i:Q_*jA,-_ je{1,2,,n}. It suffices to show that
F(q;) # G(g;). If we assume that G(g;) = A,(q)) =
F ,(g;) for some i, then

F(g) if gS' " (q)),

G( djp=
0 otherwise .

If G(g) =0,then G(g,) * F(q)
which proves the theorem. Suppose that g¢;€ S

(g), then S'™"(g)c '™ (g). K Fa) = F(ap,
then F,C F,. However this contradicts the maximality
of A;=F, since F,+ F,.Thus F(q) # F(q;), which

since F(g) *+0,

1-F(q)

implies that G(gq;)) = F(q) # F(q;). Hence N+ § P,

i=T,1%j

for any j={1,2,,n}.

Theorem 2.13. Let N= (Q,F, X, ") be a fuzzy sub-
machine of M. Then the following assertions are
equivalent.

(1) N is retrievable.
(2) Every primary fuzzy submachine of N is strongly
connected.

Proof. (1)=(2) ' Let P=(Q, A, X, ¢*) be a primary
fuzzy submachine of N. Then A=F, for some
ge suppF. Let py,p,€S' ™ 79(q) = suppA. By retrieva-
bility of N, g=S' ™(p)) and F(p)) = F(p;) = F(g).
Thus p,e S’ 7 (p,), which implies that P is strongly

connected.

(2)=(1) : By Theorem 2.12, N= ,L:le“ where P;=

(Q,A;,X,uA‘) are primary fuzzy submachines of N.
Suppose that each P; is strongly connected. From the

proof of Theorem 2.9, N is retrievable.
If we take the fuzzy set F as I, then we obtain the

following corollaries.

Corollary 2.14 [6]. Let M= (Q,X,uz) be a fuzzy finite
state machine. Let P = {P; P,--,P,} be the set of all
distinct primary M. Then (1)

M= CJP,-, and (2) M=+ Q P; for any j={1,2,-,
i=1 i=1,i#j

submachines  of

n}.

Corollary 2.15 [6]. Let M= (Q,X,x ) be a fuzzy finite
state machine. Then the following assertions are
equivalent.

(1) M is retrievable.
(2) Every primary submachine of M is strongly con-
nected.

The connectedness of fuzzy finite state machine can
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be defined as fuzzy in the following.

Definition 2.16. Let N= (Q, F, X, #) be a fuzzy sub-
machine of M= (Q,X,x). And let P=(Q, T, X, 1)
be a fuzzy submachine of N. Then P is said to be

separated if there exists a proper submachine P =

(Q.T.X,uT) such that P\P=(Q T\T,X,u"T)
is a fuzzy submachine of P. And if N has no separated
proper submachine, it is said to be connected.

Theorem 2.17. Let N=(Q,F, X, ") be a fuzzy sub-
machine of M. Then the following assertions are
equivalent.

(1) N is retrievable.

(2) Every singly generated fuzzy submachine of N is
primary.

(3) Every nonempty connected fuzzy submachine of N
is primary.

Proof. (1)=(2) : Let N=(Q,F, X, ") be retrievable.
By Theorem 212 N = L:JIP,«, where the P; are primary

fuzzy submachines of M. And by Theorem 2.13, the P;
are strongly connected. Let F, be a singly generated
fuzzy submachine of N. Then F, is included in some
primary fuzzy submachine P;. Since P; is strongly
connected, by Theorem 26 F,=P;, Hence F, is
primary.

(2)=(1) : By Theorem 2.13, it suffices to show that
every primary fuzzy submachine of N is strongly
connected. Suppose that F, is primary. Since every

singly generated fuzzy submachine of N is primary,
obviously F, has no proper submachines. Thus by
Theorem 2.6, F, is strongly connected.

(3)=>(2) : Suppose that (2) does not hold. Then there
exists some singly generated fuzzy submachine F, of N
which is not primary. Clearly, F, is connected, but not
primary. Thus (3) does not hold.

submachines. Thus by Theorem 2.6, F, is strongly

connected.
(1)=(3) : Let N be retrievable. By Theorem 29, N
can be expressed as the disjoint union of strongly

connected fuzzy submachines P; = (Q, T;, X, u T’),z' =1,
2.n. Let R=(Q,V,X,r") be any nonempty connect-
ed submachine of N. Then

R =RmN=Rm( U’:‘=1P,‘) = U':»=1(ROP,-).

Each RNP; is a fuzzy submachine of P;. Since P;is
strongly connected, Theorem 2.6 implies that RNP; is
not proper, that is, either RMNP; = ¢ or RNP;=P;.

k

Thus R = ,UIP,»], 1<i -,ix<n. But the connect-

b=

edness of R implies that R= P, for some ;. Since P;
is strongly connected, K must be primary.
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As a corollary of Theorem 217, we obtain the
following.

Corollary 2.18 [6]. Let M= (Q, X,z) be a fuzzy finite
state machine. Then the following assertions are
equivalent.

(1) M is retrievable. _

(2) Every singly generated fuzzy submachine of M is
primary.

(3) Every nonempty connected fuzzy submachine of M
is primary.
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