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Investigation of the Reliability of Knowledge Source in CLINAID
using Fuzzy Relational Method
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ABSTRACT

Once the medical knowledge-based system has been developed, it is essential to investigate the knowledge sources of
the system because knowledge sources can affect the performance of the system in great deal. This paper presents
the method and the results of the reliability test done on the medical knowledge-based system CLINAID. A
knowledge source tested is Cardiovascular body system data used in CLINAID. The reliability test will be done by
investigating structural relationships revealed by fuzzy relational method between the components of the knowledge
sources of individual body systems using syndromes as its main component. These partitions are going to be
compared with the syndromes elicited from the medical experts. This paper also reports the outcome of the
computations using 7 implication operators performed on Cardiovascular body system data.

Key Words : CLINAID, fuzzy relational products, structural analysis, fuzzy implication operators, medical knowledge-
based systems

1. Introduction the concepts of a hierarchy of diagnostic levels and
syndromes in the Diagnostic Unit. Each level of
A prototype of Diagnostic Unit of CLINAID has been hierarchy contains a complete structure, which may be
successfully developed and is in the process of called granule [3]. The hierarchy subdivides the whole
fine-tuning the system. Generally, once the medical activity of diagnostic process into several level-based
knowledge-based system has been developed, it is activities. That is, it creates a number of different
essential to investigate the knowledge sources of the granules in the diagnostic process and so decreases the
system. In the case of CLINAID, however, it is much size of the problem to be resolved at each granule. This
more difficult and different from the other medical diagnostic hierarchy uses syndromes as the main
systems because it deals with the whole human body —instrument.
systems instead of a single body system [1][2]. Thus, A syndrome is a set of signs and symptoms which
CLINAID must deal with the complexity problem caused distinguishes a set of diseases. Syndromes are essential
by the multiplicity of contexts and the huge amount of When the system deals with a multiplicity of contexts of
the medical knowledge it has to contain. different medical specialties. Using the syndromes

To reduce the complexity of inference, CLINAID uses instead of the whole set of signs & symptoms in the
diagnostic process eliminates the facts irrelevant to a

particular context that may cause ambiguities In
inference. Using syndromes also reduces the complexity
of inference and increases the reliability of inference.
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Therefore, it would be fittingly logical that reliability
test on CLINAID be done by investigating structural
relationships between the components of the knowledge
sources of individual body systems using syndromes as
its main component. Furthermore, it is desirable to
compare information contained in syndromes that were
given explicitly by experts, with intrinsic groupings of
signs & symptoms characterizing individual diseases in a
body system that are extracted computationally. These
comparisons could give the breakthrough of finding the
artificial syndromes that refer to the intrinsic clusters of
signs and symptoms made computationally by the
systerm.

Comparison of the structures of the knowledge
sources will be done by computing the fuzzy relational
products between a relation and a transpose(or, inverse)
of that relation. For example, if SD is a relation of signs
& symptoms to diseases, then we compute (SD <I SD?),
where SD” is the transpose of a relation SD, to analyze
the structure of the relation between signs & symptoms
and diseases. This processing should reveal hidden
groupings by discovering equivalences and preorders of
signs & symptoms in a body system. The intrinsic
groupings are represented by the partitions or the
equivalence classes in the hierarchical structure of the
Hasse Diagram extracted from the preorder of signs and
symptoms over diseases. What is concerned about here
is not the classification of diseases, but the groupings of
signs & symptoms extracted mechanically, in order to
examine whether these groupings are comparable to the
real-life medical expertise given by the expert sources
such as doctors, clinicians, or medical encyclopedias.

In this paper, these partitions are going to be
compared with the syndromes elicited from the medical
experts in order to investigate the reliability of the
knowledge structures in the Diagnostic Unit. Cardiovas—
cular system data provided by Dr. Anderson will be used
to accomplish this task. This data has 181 signs &
symptoms and 20 diseases. Thus, the composed relation
using the relational products will produce the matrix the
size of which is 181 x 181. Names of signs & symptoms
with associated syndromes and names of diseases in the
actual data are listed in [4].

Actual data have 60 signs & symptoms (1 through 60)
that are related to syndrome 2, Acute Cardiac Failure, 22
signs & symptoms (61 through 82) related to syndrome
3, Right Sided Heart Failure, and 18 signs & symptoms
(83 through 100) related to syndrome 4, Left Sided Heart
Failure. Signs & symptoms of 101 through 181 are
related specifically to 1 or more of 20 diseases in the
data, but are not commonly related to any of syndromes
in the data.

This paper reports the outcome of the computations
using 7 implication operators, Standard Star (S), Gaines
43 (G43), Modified Gaines 43 (G43’), Lukasiewicz (Z),
Kleene-Dienes-Fukasiewicz (KDE), Kleene-Dienes (KD)
and Early Zadeh (EZ), performed on this data. The
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definitions of the fuzzy implication operators most widely
used including the above 7 operators are listed in the
section 2.3. Comparisons will be made on how closely
the groupings computed by the relational products match
the syndromes given by the medical experts.

2. Theoretical Background

2.1 General Overview of CLINAID

CLINAID is a medical fuzzy knowledge-based system
that is designed to capture the complete semantics of
medical activity in a hospital environment. It is intended
to assist in not only the diagnosis of a patients illness,
but also other types of hospital activities such as
consultation, the prescription of medication, and update
of patients records, etc. Each type of activity is
conducted in a different environment. In addition to this,
unlike  other medical knowledge-based systems,
CLINAID is designed to work with all body systems
rather than the narrow, restricted domain of a single
body system [5]. Hence, it is a system that operates in a
multi-environmental situation and makes decisions
within a multiplicity of contexts of different medical
specialties.

At present, CLINAID is designed to handle 11 body
systems representing the multiple branches of medicine,
including Cardiovascular, Respiratory, Central Nervous
System, Endocrine, and Gastrointestinal System [6].
Thus, its knowledge base contains a large amount of
medical expertise and must be able to handle the
following problems:

Incompleteness of medical data:

It is rarely the case that the patients’ signs &
symptoms observed by the clinician possess the exact
characteristics of the disease, as they are not always
present or observable.

Locality of inference:

Not all signs & symptoms of the patient are relevant
in a given context. Sometimes, it is possible that
irrelevant signs & symptoms may lead to a wrong
conclusion.

Complexity of inference:

Because of the huge amount of the medical knowledge
and the multiplicity of contexts, the complexity of
inference can grow so rapidly that it becomes
unmanageable.

In order to be used for decision making across several
knowledge domains, CLINAID must handle all of the
above problems. Hence its knowledge base must have
appropriately  structured medical knowledge. These
desired characteristics are provided by the fuzzy
relational method [7], which is explained in the next
section.

The conceptual structures as well as the basic
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architecture of CLINAID have been described in [7][8].
To give complete cover for all hospital activities, the
basic architecture of CLINAID consists of four main
cooperating units, each unit comprising a complex
autonomous subsystem. The four main units of
CLINAID are:

a) Diagnostic Unit, which infers a working diagnosis
based on the information given by a user, or
alternatively sends an indication that the
information provided is not sufficient to produce a
working diagnosis.

b) Patient Clinical Record Unit, which maintains and
updates patients medical records. It also allows the
information to be retrieved as required in order to
ensure that all the relevant patient information can
be provided at critical moments.

¢) Treatment Recommendation Unit, which advises
appropriate treatment and medication for the patient
based on the working diagnosis provided by the
Diagnostic Unit. These recommendations take
account of both the personal history of the patient
and any possible adverse effects from the available
treatments.

d) Planning and Co-ordination Unit, which controls
communication and interaction with the other units.
It also ensures that the information necessary to
the current activity of each unit is always provided.

2.2 Fuzzy Relational Method

The fuzzy relation theory was originally introduced in
1971 by Zadeh as an extension of fuzzy sets [9]. Since
then a lot of productive research has been accomplished
in this field. Especially Bandler and Kohout have
developed the fuzzy relational method consisting of a
mathematical theory, methodology, epistemology, and
supporting computational algorithms for representing and
processing knowledge.

The fuzzy relational method provides a means of
analyzing real-world scientific data as an effective
mathematical tool for structural analysis. It helps to
identify meaningful structures implicit in real-world data.
This method can also be used in Knowledge
Engineering. A fuzzy knowledge-based system, such as
CLINAID, which utilizes the fuzzy relational method to
capture, represent, and infer knowledge, can be operated
and manipulated in a unified computational framework.

Practically, the fuzzy relational method was
established using fuzzy relational products, and related
computational procedures such as fast fuzzy relational
algorithms [10]. A brief explanation of the fuzzy
relational method is given below.

Given two relations, the relation R, which is an
element of the lattice of relations from set A to set B,
ie, R €R(A—B) and the relation S € #(B—(), a
product relation (R * S) is a relation from A to C,
determined by R and S. There are several types of
product used to yield product relations, each having

224

distinctive mathematical properties and applicability. Of
those four definitions will be presented by the scheme of
(R * S) €ERA—C), where * € { -, 4, D>, O}

Given two relations, R € #(A—B) and S € #(B—0),

1. The circle product is defined as:
alR°S)c & (@R N Sc) = 0.

In this product relation, an element a is related to an
element ¢ by the composed relation (R ¢ S) if and only if
the intersection of the afterset of a and the foreset of ¢
is non-empty. That is, there exists at least one element
common to the afterset of a and the foreset of c.

2. The triangle subproduct is defined as:
a(R4S)c & aR € Sc

In this product relation, an element a is related to an
element ¢ by the composed relation (R<S) if and only if
the afterset of a is a subset of the foreset of c.

3. The triangle superproduct is defined as:
a(R>S)c & aR =2 Sc.

In this product relation, an element a is related to an
element ¢ by the composed relation (R[>S) if and only if
the afterset of a is a superset of the foreset of c.

4. The square product is defined as:
a(ROS)c & aR = Sc.

In this product relation, an element a is related to an
element ¢ by the composed relation (RS) if and only if
the afterset of a is exactly equal to the foreset of c.
Mathematically, the square product is the intersection of
two triangle products, that is (R<4S) M (RD>S).

As the matrix notation is more convenient
algorithmically because of its explicit handling of logic
values, the above definitions of relational products may
also be defined in terms of the logical connectives of the
matrices of relations R and S.

1. (RS = Vj (R AN Si)
2. (R4S = Nj (Rj — Sp)
3. (RDS)ik = Nj (Rj < Si)
4. (ROS)xk = N; (Ry = Si)

where R; and Sy represent the fuzzy degrees to which
the respective statements a:tb; and b;Scy are true.

The applied meaning of these product relations
depends on the domain of the problems. Each product
relation can be given a specific knowledge domain and
semantic interpretation according to its application. For
example, if K is the relation between a set of patients
and a set of signs and symptoms represented as in
(Patients — Signs & Symptoms) and S is the relation
between a set of signs and symptoms and a set of
diseases represented as in (Signs & Symptoms —
Diseases), then the above product relations would have
the following meanings [4]:
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1. a(R°S)c & patient a has at least one sign or
symptom of disease c.

2. alR<S)c < the signs and symptoms of patient a
are among the signs and symptoms
which characterize disease c.

3. alRP>S)c & the signs and symptoms of patient a
include the signs and symptoms
which characterize disease c.

4. a(ROS)c & the signs and symptoms of patient a
are exactly those of disease c.

2.3 Fuzzy Implication Operators

The definitions described in the previous section work
for both classical two-valued logic(Boolean logic) and
fuzzy logic. For Boolean logic computations, the logical
connectives used in definitions(A, V, —) are Boolean
logic operators; such as, and for A, or for V, and a
material implication operator for —.

However, to be of any real use, above product
relations must be fuzzified so that the meanings of the
product relations can have varying degrees of truth
instead of absolutely true or false values. Thus, for the
fuzzy logical computations discussed in this work, the
following logical connectives are used: min for A, max
for V, and fuzzy implication operators for —.

Various fuzzy implication operators exist which use
different fuzzy logics. The standard condition, commonly
accepted in literature which requires the compliance of
each fuzzy implication operator, is that it must agree
with Boolean logic values at the corners of its own
implication table. That is, fuzzy variables must take the
crisp value of 0 or 1 at the corners. In this paper, I will
consider 10 fuzzy implication operators listed in Table 1.
For detailed explanations, see [11].

Since a large number of many-valued logic implication
operators exist, the choice of the implication operator
becomes a critical step of the fuzzy relational method.
Empirical research shows that the choice is all dependent
on the nature of the data and knowledge domain of the
particular application under investigation.

This determines the selection of the appropriate
implication operator(s) in a specific class of application.
In other words, one implication operator could be the
best choice in one application, yet unusable in another.
Or there may exist a number of implications that
produce equivalent results. Thus, comparative studies are
required for each application dealt with.

There exist two versions of computation for triangle
and square products: harsh and mean. The harsh
criterion takes the minimum value over all the elements,
whereas the mean criterion takes the arithmetic mean.
For instance, the triangle subproduct can be computed
either using the harsh criterion as (R<S);=A(R;—

Si), or the mean criterion as (R<1S);= —IN gl(R,,-—nS‘ A

where N is the number of elements which are involved
in the computation.
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Table 1. Fuzzy Implication Operators

1. S# Standard Sharp

1 iff a=1 or b=1
a-> b=
0 otherwise
2 S Standard Strict
1 a<b
a—> b=
0 otherwise
3 S Standard Star
1 a<b
a-—>3 b=
b otherwise
4 G43 Gaines 43
b
a—>4+b=min| 1, - )
a
4'.  (G43’ Modified Gaines 43 ]
1-a
a—4¢b=min| 1, -, — |
a 1-b |

Fukasiewicz

a —s b = min(1, 1-at+b)
55. KDL Kleene-Dienes-Lukasiewicz
a —ss5 b = min(1, 1-a+ab)

6 KD Kleene-Dienes

a-—»b=(1-aVb
7 EZ Early Zadeh

a—>» b= (anb)V(l-a)

= (@ —¢ b)\ka,
where ka=(1-a)Va

8 W Willmott

a—s b= (1-a)Vb)AlaV(1-b)V(bA{1-a)))

(@ —7 b)~kb
(a —¢ b)ANkaNkb

Thus the computation of fuzzy relational products
depends on the choice of the fuzzy implication operator
and the version of the two computational criteria used in
computing it. As soon as these two are selected, the
computation of each element in the matrix of the
composed relation becomes a well-determined task.

3. Experimental Results

Comparisons will be made on three syndromes, Acute
Cardiac Failure, Right Sided Heart Failure, and Left
Sided Heart Failure, at each of the four a-cuts
computed by TRISYS for each implication operator.
After making individual comparisons, the overall
performance of each implication operator will be
examined by comparing three syndromes in the data.
The results of the experiment and the inclusion of each
class generated for three syndromes are summarized in
the Tables 2 to 4 and Figures 1 to 3.

3.1 Syndrome 2 (Acute Cardiac Failure)

The half-lower a-cut of S, G43, (43, and E
implication operators produced a class cl of 40 signs and
symptoms of the syndrome 2, which has 60 signs and

symptoms in the data. They all produced the class of the
same 40 signs and symptoms of the syndrome 2. The
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mean a-cut of 43 and £ implication operators produced
a class ¢l of 38 signs and symptoms of the syndrome 2.
The half-upper a-cut of G43 produced a class cl of 31
signs and symptoms of the syndrome 2. The mean a-cut
of EZ and KDZ implication operators produced a class
cl of 21 and 19 signs and symptoms of the syndrome 2,
respectively. At the same a-cut, KD implication operator
produced a class ¢2 of 14 signs and symptoms.
Implication operators KDE, KD, and EZ produced
exactly the same class (cl) of 159 signs and symptoms
at the half-lower a-cut. Of these 159 signs and
symptoms, 40 are related to the syndrome 2 and these 40
signs and symptoms are exactly the same as those
produced by the half-lower a-cut of S*, G43, G43’, and £
implication operators. The classes generated at the
various a-cut levels of different implication operators are
completely contained in the syndrome 2 of the actual
data. In other words, the same signs and symptoms are
clustered together to form different partitions of the
syndrome 2. Furthermore, the classes that have smaller
numbers of signs and symptoms are contained in the
classes of larger numbers of signs and symptoms. The
summary and the inclusion of each class generated for
the Acute Cardiac Failure syndrome are shown in Table
2 and Figure 1.

The convention we are using here through Table 3
and 4 are as follows. The first column shows the
number of signs and symptoms of each syndrome, in
this case for the Syndrome 2. Remaining columns show
the names of implication operators with different levels
of a-cuts. Four a-cut levels are represented as H for
height a-cut, HU for half-upper a-cut, M for mean a

60signs & symptoms

S*pr(cl) G43m.lcl)
Fur(cl) G43'hilcl)
40signs & symptoms

3lsigns & symptoms

21signs & symptoms 21signs & symptoms 21lsigns & symptoms

Figure 1. Inclusion of Operators for Syndrome 2
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Table 2. Comparison with Syndrome 2

Si

(%ZHS S | G43nL { G43"n | B | G43y| Bt | GA431e | EZa [KDLa| KDy
Symp{ (c])| (c1) | (c1) [(cD})| {c]) |{c]}| (c1) |(c)| (c1) | (c2)
toms

1 X X X X | x X X X X

2 X X X X | x X X X X X

3 X X X X | x X X X X X

5 X X X X | x X X

6 X X X X | x X X

7 X X X X | x X X X

9 X X X X

10 X X X X | x X X

12 X X X X | x X X X X X

13 X X X X | x X X X

14 X X X X X X X

15 X X X X | x X X X

16 X X X X | x X X

17 X X X x| x X X X X X

18 X X X x| x X X X X X

19 X X X X | x X X X X X

20 X X X X | x X X

22 X X X X | x X X X X X

23 X X X x| x X X X X X

28 X X X X | x X X

29 X X X X | x X X X X X

31 X X X X | x X X X X X

33 X X X X | x X X

34 X X X X X X X

36 X X X X

40 X X X X X X X X X

41 X X X X | x X X X X

42 X X X X | x X X X X

43 X X X X | x X

44 X X X X | x X X

45 X X X X | x X

46 X X X X | x X X

48 X X X x| x X X

49 X X X X | x X X

50 X X X x| x X

51 X X X X X X X X X

53 X X X X X X X X X

54 X X X X | X X X X X

57 X X X X | x X X

58 X X X X | x X X X X X

-cut, and HL for half-lower a-cut. For example, S m
represents Standard Star(S”) implication operator using
half-lower a-cut.

Also the name of the class inserted in the parenthesis
represents the number of the smallest element in that
partition. For instance, class ¢l of KDEaf(cl) shows the
partition that consists of 19 signs and symptoms, 1, 2, 3,
12, 13, 17, 18, 19, 22, 23, 29, 31, 40, 41, 42, 51, 53, 54, and
58. So, we represent this class as cl because 1 is the
smallest signs and symptoms number in that partition.

3.2 Syndrome 3 (Right Sided Heart Failure)

The mean a-cut of (43 and Z implication operators
and the half-lower a-cut of S° and G43° implication
operators generated the same class (c62) which has 20
signs and symptoms of the syndrome 3. This result is
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almost identical to the syndrome 3 of our data, which
has 22 signs and symptoms. At the half-upper a-cut, the
‘G43 implication operator generated a class ¢62 of 19
signs and symptoms of the syndrome 3. The mean a-cut
of the KDZ implication operator produced a class c64
which has 9 signs and symptoms of the syndrome 3. At
the same a-cut, KD and EZ implication operators
generated a class c62 of 7 signs and symptoms of the
syndrome 3. As mentioned for the syndrome 2, KDE,
KD, and EZ implication operators produced exactly the
same class (cl) which has 159 signs and symptoms at
the half-lower a-cut, and 20 of 159 signs and symptoms

22signs & symptoms

S*u(c62)  G43m(c62)
Eam(c62) G43'mi(c62)

20signs & symptoms

19signs & symptoms

7signs & symptoms

9signs & symptoms
Figure 2. Inclusion of Operators for Syndrome 3

Table 3. Comparison with Syndrome 3
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are exactly the same as those produced by G43, £, S,
and G43’ implication operators. As was the case for the
syndrome 2, the classes generated at the various a-cut
levels of different implication operators are completely
contained in the syndrome 3 of our actual data, and the
classes of smaller numbers of signs and symptoms are
contained in the classes of larger numbers of signs and
symptoms. The summary and the inclusion of each class
generated for the Right Sided Heart Failure syndrome
are shown in Table 3 and Figure 2.

3.3 Syndrome 4 (Left Sided Heart Failure)

The mean a-cut of the KDE implication operator
produced a class ¢83 of 15 signs and symptoms related
to the syndrome 4 of our data, which has 18 signs and
symptoms related to it. At the same a-cut, the G43
implication operator generated a class ¢83 of 13 signs
and symptoms of the syndrome 4. The mean a—cut of S’,
EZ, and G43’ implication operators generated the same
class (c83) which has 12 signs and symptoms of the
syndrome 4. The half-upper d-cut of G43 and £
implication operators produced a class ¢84 containing 10
signs and symptoms of the syndrome 4. At the same a
—cut, the KD implication operator yielded a class ¢84 of
6 signs and symptoms of the syndrome 4. Just as for the
above two syndromes, the same signs and symptoms are
clustered together to form several different partitions of
the syndrome 4, and the largest class ¢83 of KDL is
also completely contained in the syndrome 4 of the
actual data. The summary and the inclusion of each
class generated for the Left Sided Heart Failure
syndrome are shown in Table 4 and Figure 3.

Table 4. Comparison with Syndrome 4

Signs -

& S'HL |G43m (G431 | Em {GA43ue | KDEm| KDy | EZu Signs . ,
Symp | (c62) | (c62) | (c62) [(c62)| (c62) | (c64) |(c62)|(c62) & |KDLwm|G43um!| S'm {G43'm| EZm [G43uu| Lau | KDnu
toms Symp| (c83) | (c83)[(c83) | (¢83) {(c83)| (cB83) | (c83)| (c84)
62 X X X X X X X toms

63 X X X X X 83 X X X X b'e

64 X X X X X X 84 < X X x

65 X X X X X X X %6 X X X < X

66 X X X X X X X

67 X X X X X X 87 X X X X X

63 X X X X X X 88 X X X X X X
70 X X X X X X 89 X X x X X

71 X X X X X X

90 X

72 X X X X X X

73 % ” X " < < < 91 X X X X X X X X
74 X X X X X X X 92 X

75 X X X X X X 93 X x X X x

76 X X X X X X

95 X X X X X

77 X X X X X -

78 X X X X X X 9% X X X X X

79 X X X X X X X 98 b4 X X X X

80 X X X X 99 X X X X X X X

81 X X X X X 100 N N N

82 X X X X X X X
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18signs & symptoms
@ 15signs & symptoms

13signs & symptoms

S#p (€83)  EZn (c83)

12signs & symptoms

KD (c84) G43ur (c83) Lur (c83)

6signs & symptoms 10signs & symptoms

Figure 3. Inclusion of Operators for Syndrome 4

3.4 Analysis of the comparison outcome

In order to make a meaningful comparison, the
following criteria are used by which the results are
ranked:

1. How close the partition is to the actual syndrome?
The larger the number of elements in the
partition are, the better the performance is.

2. What level of a-cut the partition is clustered?
The higher the a-cut is, the better the
performance is for as the value of a decreases,
each a-cut within the sequence of a-cuts
contains its predecessors with the gradual
addition of more elements.

3. Are elements in the partition contained in the actual
syndrome of the data?
The more elements in the partition are
contained, the better the performance is.

The following results have been found from the above
comparison based on these criteria:

1. For all 3 syndromes, we have found three classes,
one for each syndrome, which are very close to
each syndrome in the actual data given by the
medical expert.

2. Signs & symptoms of these classes are completely
contained in the respective syndromes of the actual
data.

3. The same signs & symptoms of each syndrome are
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clustered together to form several different
partitions of their respective syndromes in different
hierarchical structures.

4, The G43 implication operator performed the best
among 7 implication operators on all 3 syndromes,
the Z implication operator being the close second.
Both implication operators consistently yielded
partitions that are very close to the actual
syndromes.

5. The results of S* and G43’ implication operators are
very similar, and the performance of both
implication operators is closely comparable to that
of G43 and £ implication operators.

6. Both KD and EZ implication operators produced
very similar hierarchical structures, so was their
performance on all 3 syndromes. They produced
partitions that are very closely matched to each
other. The EZ implication operator, however,
performed somewhat better than the KD implication
operator on most cases in terms of comparison
criteria.

7. The hierarchical structures generated by the KDE

implication operator are very different from those of
KD and EZ implication operators.
However, the performance of the KDE implication
operator is similar to that of KD and EZ
implication operators on all cases, except the mean
a-cut computation of the syndrome 4. In that
computation, KDEZ produced the best result of all
the computations for the syndrome 4.

To show the hierarchical structures generated by each
implication operator, Hasse Diagram of seven implication
operators at half-lower a-cut are shown in Figures 4
through 10 as the representatives of each implication
operator. A bold-faced node represents the equivalence
class and the node number indicates the number of signs
and symptoms that class represents.

Figure 4 : Hasse Diagram of S ur
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Figure 7 : Hasse Diagram of Eus

Figure 10 : Hasse Diagram of EZxr
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4. Conclusions

In conclusion, I have been able to find the consistent
patterns of partitions through all 7 implication operators.
In particular, the largest partitions for each syndrome are
the refinements of their respective sets of signs &
symptoms forming artificial syndromes in the actual
data. If the data are robust, the results from the
computations of fuzzy relational products should be
consistent among various implication operators. In other
words, the more agreements in the outcome of
computations using different implication operators, the
more reliable the data are.

Thus, in the study of investigating structural
relationships of the knowledge sources in the Diagnostic
Unit, reliable means that there is no conflict between the
knowledge structure elicited from the experts, and the
structure relating syndromes to diseases acquired
computationally. Therefore, we can conclude that the
knowledge source relating signs & symptoms with
diseases used for the Cardiovascular body system of the
CLINAID system is reliable. Both these structures are
compatible and can be used jointly in the inference
system of the Diagnostic Unit of CLINAID. Also, this
method of generating artificial syndromes is a
contribution to computational aspects of engineering of
knowledge-based systems connected with the so called
data mining. In this case, it is discovering implicit
syndrome granule in non-syndrome relational data.
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