Control of Plume Interference Effects on a Missile Body Using a Porous Extension

다공확장벽을 이용한 미사일 동체에 대한 플룸간섭 현상의 제어

  • Published : 2003.12.01

Abstract

The Physics of the Plume-induced shock and separation Particularly at a high Plume to exit pressure ratio and supersonic speeds up to Mach 3.0 with and without a passive control method, porous extension, were studied using computational techniques. Mass-averaged Navier-Stokes equations with the RNG $\kappa$-$\varepsilon$ turbulence model were solved using a fully implicit finite volume scheme and a 4-stage Runge-Kutta method. The control methodology for plume-afterbody interactions is to use a perforated wall attached at either the nozzle exit or the edge of the missile base. The Effect of porous wall length on plume interference is also investigated The computational results show the main effect of the porous extension on plume-afterbody interactions is to restrain the plume from strongly underexpanding during a change in flight conditions. With control, a change in porous extension length has no significant effect rut plume interference.

플룸간섭 현상은 플룸에 의한 경계층 유동의 박리, 강한 전단층의 발생, 그리고 다수의 충격파들이 박리유동 및 전단층과 상호작용하게 되는 매우 복잡한 유동현상으로, 현재 미사일의 후미부에서 발생하는 플룸간섭 현상의 상세에 관해서는 잘 알려져 있지 않다. 본 연구에서는 초음속 미사일의 동체후미부에서 발생하는 플룸간섭 현상의 특징 및 동체기저부에 설치된 다공확장벽(porous extension)의 플룸간섭 현상에 대한 영향을 수치해석적으로 조사하였다. 그 결과, 다공확장벽이 플룸에 의한 충격파와 경계층 유동의 박리를 완화시켜 미사일 동체의 제어성능이 향상될 수 있음을 알았다.

Keywords

References

  1. Albini, F. A., 'Approximate Computation of Under-expanded Jet Structure,' AIAA Joumal, 1965, Vo1.3, No.8, P. 1538 https://doi.org/10.2514/3.3197
  2. Boynton, F. P., 'Highly Under-expanded Jet Structure: Exact and Approximate Calculations,' AIAA Journal, 1967, Vol.5, No.9, pp.1703-1704 https://doi.org/10.2514/3.4283
  3. Adamson, T. C. Jr. and Nicholls, J. A., 'On the Structure of Jets from Highly Underexpanded Nozzles into Still Air,' Journal of the Aeronautical Sciences, Jan. 1959, Vol.26, pp.16-24
  4. Alpinieri, L. J. and Adams, R. H., 'Flow Separation Due to Jet Pluming,' AIAA Journal, Oct. 1966, Vol.4, No.10, pp.1865-1866 https://doi.org/10.2514/3.3802
  5. Fetterman, D. E. Jr., 'Effects of Simulated Rocket-Jet Exhaust on Stability and Control of a Research-Type Airplane Configuration at a Mach Number of 6.86,' NASA TM X-127, 1959
  6. Yanowitch, S. and Hneuber, R. N., 'Scout First Stage Flight Characteristics,' NASA CR-111945, 1968
  7. Matesanz, A., Vel$\'a$zquez, A., Perales, J. M. and Santiago-Prowald, J., 'Numerical Simulation of Base-Flow/Plume Interaction,' AIAA Paper 98-1597, 1998
  8. Bannink, W. J., Houtman, E. M. and Bakker, P. G., 'Base Flow/Underexpanded Exhaust Plume Interaction in a Supersonic External Flow,' AIAA Paper 98-1598, 1998
  9. Burt, J. R. Jr., 'An Experimental Investigation of the Effect of Several Rocket Plume Simulators on the Pressure Distribution of a Body of Revolution at Free Stream Mach Number of 0.9 to 1.2,' US Army Missile Command, Redstone Arsenal, Alabama, Technical Report RD-TR-70-23, Nov. 1970