(>3 e
Aueld GHENe Adw o IRPEY B4e 494 718 Aund o
zolA BAE 5Y 7He ARHES KR, 2
4@t 29 Baael #¥% 598 499 8 Aud g
wob g AHHAE RA £E AelE 4 %Y 4 Auo)
A4 8 ARUHE BT ABUIAE Fool B RN
WA s12e Tl Ha) $5Ee e,

® AR W4 P2 GFARE A9 98 A2
g Agstel g Anude GAAEE FolE Rolth o YIYRE DM
AN, A2 ANRR)e] B BRAG 498 Jhe A Pdasg A
zeolq WA HHe] ARoNE REoBA ARANY FANHE %eu}
de) 402 A4E BRAFE A8l AEad) 27F 848 F
Agrsris AEma Suol AR BAxE Folt

AE
2ES

J[”J

A Submesh Allocation Scheme Based
on Classification of Tasks and Submeshes

Won Joo Lee'- Chang Ho Jeon'

ABSTRACT

This paper presents a new submesh allocation scheme for mesh-connected multicomputer systems. The key idea in the proposed allocation
scheme is to reduce the submesh search time using classified free submesh lists (CFSL). This scheme reduces the submesh search time by
classifying independent free submeshes according to their types (square, horizontal rectangle, vertical rectangle) and searching the best-fit
submesh from the classified free submesh list. When no suitable submesh is found, the search can be continued by using the expansion index
(EI), which is stored as an attribute of each submesh, is used to form a larger submesh. Through simulation, we show that the proposed strategy

improves the performance compared to previous strategies with respect to submesh search time.
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Classified Free Submesh List)
1. Introduction

Mesh structure has been widely used in commercial or
prototype multicomputer systems like Intel Touchstone Del-
ta [1], Intel Paragon XP/S [2], Tera Computer system [3],
Fusitsu AP1000 [4], Sanyo Edden/Cyberflow system [4],
MP-1 [5], Parsytec GC [5], Data Transport computer [5],
and PSAM [6], because of its simplicity, regularity, and ex-
pandability. )

For better performance of multicomputer system, a sub-
mesh allocation scheme is needed, which can search for the
best-fit submesh and allocate it to a task which can request
submeshes of various sizes. Submesh allocation scheme is
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one that generates free submeshes by searching from the
entire mesh structure and allocates the best—fit submesh to
a given task. If it fails to find an available submesh, task
should wait in a queue ; as a consequence, other tasks are
delayed, which results in the performance deterioration of
the multicomputer system.

The previous research efforts concerning submesh allo-
cation for mesh structure have been mainly focused on
searching for the best-fit submesh and reducing the sub-
mesh allocation delay. As a result, various submesh alloca-
tion schemes [7-15] have been proposed. These submesh
allocation schemes can be classified as first-fit and best-fit
allocation. In the first~fit allocation scheme [8, 9], a submesh
is assigned immediately when it is found. The first-fit
allocation scheme is simple and takes shorter submesh
search time, but it can have a severe fragmentation and poor
performance in comparison with the best-fit allocation. The
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best-fit allocation scheme [7, 10-15] makes a list of free
submeshes by searching over a mesh structure and allocates
the best—fit submesh from the list for a given task. This
scheme has less external fragmentation and better perfor-
mance compared to the first—fit allocation scheme. In the
best-fit allocation scheme, submesh allocation algorithm is
complex and submesh search time can be long. Also, pre-
viously known best-fit allocation strategies search over the
entire free submesh list to find the best-fit submesh for a
given task. This approach has a problem that the submesh
search time increases as the number of free submeshes in-
creases.

In this paper, we propose a new submesh allocation sch-
eme which improves the performance of multicomputer sys-
tems. The key idea of this allocation scheme is to reduce
free submesh search time of task by using the classified free
submesh list (CFSL). This scheme reduces the submesh
search time by classifying independent free submeshes ac—
cording to their types (square, horizontal rectangle, vertical
rectangle) and searching the best-fit free submesh from the
classified free submesh list. If it fails to find a free submesh,
the size of each independent free submesh is expanded using
expansion index (EI) which is stored as an attribute of each
independent free submesh and the best-fit free submesh is
chosen. Through simulation, we show that the proposed st-
rategy improves the performance compared to the previous
strategies with respect to the free submesh search time.

The remainder of this paper is organized as follows : Sec-
tion II presents two-dimensional mesh structure and sub-
mesh. In Section III, the previous strategies about submesh
allocation are introduced. The proposed submesh allocation
scheme is presented in Section IV. In Section V, the per-
formance of the proposed scheme is evaluated by computer
simulation for various practical operational conditions.
Finally, the conclusion is given in Section VL

2. Two-Dimensional Mesh Structure

A two-dimensional mesh, M(W, H), is a WXH rectan-
gular grid consisting of W XH nodes, where W and H re-
present the width and height, respectively. Each node in the
mesh refers to a processor. In this paper, address of a node
is denoted by <x, y>, where 0 < x < W-land0 <y <
H-1. A node <x, y> is located on the coordinate position
<x, y> on the base of the lowest-leftmost position <0, 0>
of the mesh. An allocated node refers to a node that is
allocated to a task and executing it. A free node refers to

a node that is not allocated to a task.
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(Figure 1) Example of a two-dimensional mesh M(8, 8)

In (Figure 1), allocated nodes are depicted as shaded
circles and free nodes are depicted as empty circles. In M(W,
H), a submesh denoted as S(w, h) is a rectangular lattice
consisting of wXh nodes, where 1<w<W-1 and 1<h<
H-1. A submesh is identified as S(<xy, y1>, <xq, y2>>), where
<x1, y1>> and <Xs, y2> are the addresses of lower- leftmost
node and upper-rightmost node of the submesh, respec—
tively. An allocated submesh is one that consists of allocated
nodes and a free submesh is one that consists of free nodes.
A free submesh is denoted as Si(w, h) or Si(<xy, y1>, <xz,
y2>) and an allocated submesh are denoted as Aj(w, h) or
Ai(<xy, y1>, <xz, y2>). In (Figure 1), allocated submeshes
are Ai(<0, 0>, <1, 1>) and Ax(<2, 0>, <2, 1>), and free
submeshes are Si1(<0, 2>, <2, 7>) and S<3, 1>, <7, 1>).

3. Previous Submesh Allocation Strategies

3.1 First-fit allocation strategies

First-fit processor allocation allocates a free submesh
whenever it searches one from the entire mesh structure.

Frame Sliding (FS) allocation scheme [8] improved the
2DB allocation scheme [7]. So, it can be applied to meshes
having rectangular structure or tasks size that is not 2". This
scheme solves the problem of internal fragmentation by fin—-
ding and allocating the proper free submesh of each task
size but still has the problem that it can't recognize free
submeshes completely. The time complexity of this scheme
is O(NB), where N is the number of all processors and B
is the number of allocated submeshes.

Adaptive Scan (AS) allocation scheme [9] improved the
FS allocation scheme by rotating the orientation of incoming
task from T{(w, h) to T(h, w) and therefore reduced the ex-
ternal fragmentation. It is same as the F'S allocation strategy
in that it moves towards x-axis as much as the width of
frame to search for a free submesh. But the movement in
the direction of y-axis is made by one, which makes the



rate of recognition of free submesh high unlike the FS al-
location strategy where the movement is made by as much
as the height of frame. The time complexity of this scheme
is ON).

3.2 Best-fit allocation strategies

Best~fit allocation makes a free submesh list by using free
submeshes after searching over the entire mesh structure.
It searches for the best-fit submesh for a given task and
allocates it to the task.

Two-Dimensional Buddy (2DB) allocation strategy [7] was
applied for a square mesh of which the size is 2". This
strategy can have internal fragmentation because it allocates
only square free submesh having size of 2" to tasks of
various sizes. Then, it is possible to assign more processors
to task than is required. During the deallocation step, sub-
mesh-merging is necessary to form bigger submeshes. This
process has a time complexity of O(logN) for the worst case.

First-Fit (FF)/Best-Fit (BF) allocation strategy [10] al-
locates a free submesh of exactly the same size as that of
task to solve the internal fragmentation problem. This st-
rategy uses allocation array and range array to allocate a
free submesh. FF searches for a submesh that consists of
nodes of which the range array values are zeros and allocates
it to the task. BF chooses the biggest free submesh having
the largest number of adjacent nodes. The submesh recog-
nition rate of this strategy is not perfect because it fixes
the orientation of the incoming task. Also, the management
of both allocation array and range array results in a big
overhead. The time complexity of FF and BF allocation is
6 (N).

Adjacency (AD]) allocation strategy [11] considers sub-
meshes that are adjacent to one of four corners of submeshes
that are already allocated. Boundary values of free subme-
shes are calculated and a submesh having the largest boun-
dary value is chosen and is allocated to a given task. This
strategy has an advantage that allocation time is constant,
regardless of the mesh size and external fragmentation is
reduced. The time complexity of this allocation algorithm is,
in its worst case, O(BS), where B is the number of allocated
submeshes.

Look-ahead (LKH) allocation strategy [12] selects the
higgest task from the waiting queue. It predicts whether
there exists a submesh which is enough for the higgest task
chosen, if there exists a free submesh, the task is assigned
to a submesh, otherwise, another free submesh is chosen
and a next prediction is made. The time complexity of this
prediction is O(1). To save the intermediate results when

EiA3L MEMNSQ Kay 2R00 71gt8t MEMHIS e 645

searching for a free submesh, a space of O(B) size is re-
quired. Time complexity of algorithm for free submesh is
OB).

Free List (FL) allocation strategy [13] is to search over
the free submesh list for a free submesh whose size is equal
to or larger than that of an incoming task. A submesh in
a free submesh list could be overlapped ; therefore after
allocating a new task, free submesh list needs to be recon-
structed. The number of free submeshes in a free submesh
list can be increased, thus resulting in a significant overhead.
The time complexity for both allocation and deallocation is
O(F%), where F is the number of free submeshes.

Quick Allocation (QA) allocation strategy [14] reduced the
submesh search time using an array that manages the states
of each row in a mesh. QA does not search over the entire
mesh structure. QA has a high recognition rate and a low
time complexity but has a problem that the performance is
dependent on the size of the mesh. Time complexity of QA
is O(hB), where h means the height of mesh.

Free Submesh List (FSL) allocation strategy [15] has a
high submesh recognition rate and searchs for a submesh
with which best-fit allocation is possible from the free
submesh list. And to keep the size of free submesh as biggest
as possible, FSL calculates a reservation index of each
submesh and chooses a submesh having the largest reser—
vation index value. Then, FSL allocates it to the task. The
more the number of free submeshes is, the longer the al-
location time becomes, because the frequency of calculating
the reservation index increases. Also FSL needs to recon-
struct the free submesh list after allocation and deallocation
because the sizes of other free submeshes changes since
allows overlapping among the free submeshes. The time
complexity of this allocation algorithm is O(F%).

Previous best-fit allocation strategies search over the
entire free submesh list to find the best-fit submesh for a
given task. This approach has a problem that the submesh
search time increases as the number of free submeshes
increases. In this paper, we propose Classified Free Submesh
List (CFSL) allocation scheme to reduce the free submesh
search time. The free submeshes from the entire submesh
structure are classified according to the corresponding types
(square, horizontal rectangle, vertical rectangle), from which
a CFSL is constructed. For a given task, by searching for
the best-fit submesh of the same type with that of given
task, submesh search time is reduced. When it fails to find
a submesh, after the size of each submesh is expanded using
expansion index, which is stored as an attribute of each
submesh. Then, the best-fit submesh is chosen.
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4. The Proposed Submesh Allocation Strategy

4.1 Basic Idea
Some basic terms will be defined prior to introducing the
CFSL allocation scheme.

Definition 1 : An Independent free submesh (IFS) is a
free submesh of maximum size that does
not overlap with other free submeshes.

For example, in (Figure 1), S(<0, 2>, <7, 7>) and S(<3,
1>, <7, 7>) overlap in the submesh S(<3, 2>, <7, 7>). The
overlapping submeshes are shown by using dotted rectangle.
Excluding overlapped submeshes, we obtain S;(<0, 2>, <2,
7>) and S2(<3, 1>, <7, 1>). These two submeshes are IFS
that is shown by using solid rectangle. Since IFSs don’t
overlap, allocation of specific IFS does not affect the size
of other IFSs. Therefore, CFSL can be made without sear-
ching over the entire mesh structure by inserting submeshes
that are divided after task allocation into their corresponding
free submesh list. CFSL is defined as follows.

Definition 2 : A Classified Free Submesh List (CFSL) is
a set of IFSs, classified as square, hori-
zontal rectangle or vertical rectangle, de-
pending on the values of w and h of IFS.

In this paper, we denote sets of square, horizontal rec-
tangle, and vertical rectangle as SQ-flist, HR-flist, and VR~
flist, respectively. Set of allocated submeshes is denoted as
Alloc-list. IFS in CFSL are ordered in decreasing order ac-
cording to its size. It is satisfied that SQ-flist N HR-flist
VR-flist = @. In (Figure 1), Si(3, 6) is inserted into VR-flist
and S2(5, 1) is inserted into HR—flist. Alloc-list includes A;
(<0, 0>, <1, 1>), Ax(<2, 0>, <2, 1>), and A3(<3, 0>, <7, 0>).

A task is denoted as T(w, h), where w and h are width
and height of the task, respectively. To execute T(w, h), it
needs a free submesh that have node of wXxh. T(w, h) is
classified as square, horizontal rectangle, and vertical rec-
tangle depending on h and w. In this paper, these types of
tasks are used. That is, we reduce the submesh search time
by searching for the best-fit submesh from the CFSL of the
same type with that of a task. For example, if the type of
a task is horizontal rectangle, HR-flist is searched over for
the best-fit submesh.

Definition 3 : An Expansion Index (EI) is a displace-
ment value such that an IFS can be ex-
panded as much as possible if overlapp-
ing is allowed

El of an IFS S(<xi, y1>, <x2, y2>), is denoted as EI(S)

=(<a, B> <a’, B'>). A free submesh, formed by over-
lapping S(<xi, v1>, <xg, y2>) with other free submesh is
denoted as S'(<x1’, y1i’>, <x2’, y2'>). EI(S) = (K a, #>,<a’,
B'>) is calculated using the lower-leftmost and upper-
rightmost coordinate values of S(<xj, y1>, <Xs, y2>>) and
S'(<xy’, v1"™>, <x2', y2'>). That is, <a, B> is <x1'- Xy,
yi'- yi> and <a', 8'> is <x2'~ Xp, y2'~ y2>

For example, in (Figure 1), IFS S1(<0, 2>, <2, 7>) can form
S1(<0, 2>, <2, 7>), by including S(<3, 2>, <7, 7>) which
overlaps with other free submeshes. If we calculate EI value
using the coordinate values of lower-leftmost and upper—
rightmost nodes, <a, 8> is <0-0, 2-2> and <ea ', 8'> is
<7-2, 7-7>. Therefore, EI[S1(<0, 2>, <2, 7>)] = (<0, 0>,<5,
0>). In (Figure 1), T(8, 6) cannot be allocated either $;(<0,
2>, <2, T>) or Su(<3, 1>, <7, 1>) and the allocation is
delayed. Si(<0, 2>, <2, 7>) is expanded using the EI(<0,
0>, <5, 0>) into $,'(<0, 2>, <7, 7>). We can allocate S’ (<0,
2>, <7, 7>) to the T(8, 6).

4.2 CFSL Submesh Allocation Algorithm

In the following, we propose a new submesh allocation
scheme, called CFSL allocation scheme. (Figure 2) describes
the CFSL submesh allocation algorithm.

CFSL_Allocation() // Request(Ti<w, h>)
{ //dispatch a task from waiting queue
T; = Dispatch_Q{(Ti<w, h>); :
Make_CFSL(); // construct CFSL
Select_Submesh(); // select the best—fit free submesh step
{
switch (T type) {
case type-S : // Square task
for G =a;i<=p;i+t)
¢ Search for the best-fit free submesh from
SQ-flist={S,, ", Sphs
break ;
case type-H : // Horizontal rectangle task
for i =b;i<=q;i++)
« Search for the best-fit free submesh from
HR-flist={Sh,"*,Sq}:
break ;
case type-V :// Vertical rectangle task
for (i =c;i<=r;it+)
« Search for the best-fit free submesh from
VR-flist={S¢,"*,Srh
break ;
}
if (best free submesh = &) {
Waiting(); //wait until a free submesh becomes available
}
}
Do_Allocate(); //submesh allocation step
{
Allocate(); //Allocate free submesh to a task
Insert(); //insert the allocated submesh into Alloc-list
Delete(); // Delete a free submesh from CFSL
}
}

(Figure 2) CFSL submesh allocation algorithm



In Make_CFSL() module, CFSL is constructed according
to the type of IFS. In Select_Submesh() module, it searches
for the best-fit submesh with the same type as that of given
task, which results in a reduced submesh search time. If it
fails to find a free submesh, the size of each independent
free submesh is expanded using expansion index (EI) which
is stored as an attribute of each independent free submesh
and the best-fit free submesh is chosen.

In this paper, CFSL submesh algorithm given in (Figure
2) is illustrated using three examples of submesh allocation.

The first example is searching the best-fit submesh from
CFSL and allocating it to a task. In (Figure 1), if a task T4(3,
4) requiring a submesh of size(3x4), it would be able to be
allocated a submesh. Make_CFSL() module generates CFSL
according to the type of IFS that has been searched from
the entire mesh structure. Alloc-list and CFSL generated

from (Figure 1) are as follows :

« Alloc-list = { Ai(<0, 0>, <1, 1>), Ax(L2, 0>, <2, 1>),
As(<3, 0>, <7, 0>) },

» SQ-flist = {2},

« HR-flist = { Sx(<3, 1>, <7, 1>) },

s VR-list = { Si(<0, 2>, <2, 7>) L
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(Figure 3) The result of T«(3, 4) allocation

In Select_Submesh(), the best-fit free submesh is sear-
ched from CFSL according to the type of task. Since T4(3,
4) is a vertical rectangle, S1(<0, 2>, <2, 7>) from VR-flist
is chosen to be the best-fit submesh. In Do_Allocate()
module, $,(<0, 2>, <2, 7>) is allocated to Ta(3, 4). After the
allocation, the type of divided $;(<0, 6>, <2, 7>) is horizontal
rectangle. Therefore, it is inserted into HR-flist. A4(<0, 2>,
<2, 5>) is inserted into Alloc-list. The result of T4(3, 4)
allocation is illustrated in (Figure 3). Alloc-list and CFSL
generated from (Figure 3) are as follows :
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o Alloc-list = { Ai(<0, 0>, <1, 1>), Ax(<2, 0>, <2, 1>),
A3(<3, 0>, <7, 0>) }, Au(<0, 2>, <2, 5>) },

» SQ-flist = VR-flist = {@},

« HR-flist = { Si(<0, 6>, <2, T>), Su(<3, 1>, <7, 1>) }.

The second example is about expanding submesh size
using expansion index and allocating it to a task. In (Figure
3), if a task Ts(8, 2) requiring a submesh of size (8X2), it
would not be able to be allocated a submesh right away.
Since, there is no available free submesh that can accom-
modate the task in CFSL. To reduce this submesh allocation
delay, our scheme selects Si1(<0, 6>, <2, 7>) from HR-flist
as the bestfit submesh and expands S1(<0, 6>, <2, 7>) into
S1'(<0, 6>, <7, 7>) using EI(S1) = (<0, 0>, <5, 0>). And,
Do_Allocate() module allocates Si'(<0, 6>, <2, 7>) to Ts(8,
2). The result of T5(8, 2) allocation is illustrated in (Figure 4).
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(Figure 4) The result of Ts(8, 2) allocation

In (Figure 4), newly generated submesh Si(<3, 1>, <7,
5>) is a square type after the allocation of T5(8, 2). Therefore,
it is inserted into SQ-flist. Allocated-submesh A4(<0, 6>,
<7, 7>) is inserted into Alloc-list. Alloc-list and CFSL ge-

nerated from (Figure 4) are as follows :

- Alloc-list ={ A1(<0, 0>, <1, 1>), Ax(<2, 0>, <2, 1>),
As(<3, 0>, <7, 0>) }, Al<0, 2>, <2, 5>) },

« 3Q-flist = { Sx<3, 1>, <7, 5>) },

» HR-flist = VR-flist ={&}.

The third example is one that even if submesh size is
expanded using expansion index, submesh allocation is
delayed, because there is no available free submesh that can
accommodate a task in CFSL. In (Figure 3), If T5(8, 3) is given,
submesh allocation for Ts(8, 3) is delayed because there is
no available free submesh that can accommodate the Ts(8,

3). Therefore, T5(8, 3) waits until a free submesh is formed.
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4.3 Submesh Deallocation Algorithm

After finishing the execution of the allocated task, a sub-
mesh that is set free is sent back to the related CFSL and
is arranged. (Figure 5) describes the submesh deallocation
algorithm. In (Figure 5), Submesh deallocation algorithm di-
stinguishes whether an allocated submesh to be freed is IFS
or not. If it is not an IFS, Deallocation() module deallocates
the allocated submesh. Make CFSL() module reconstructs
CFSL, searching over the entire mesh structure. If it is an
IFS, Insert_CFSL() module inserts the submesh into CFSL
of which the corresponding type is same as that of IFS,

CFSL_Deallocation ( ) // Deallocation(A<w, h>)
{
if ( Alloc-list = @) // Alloc-list : allocated submesh list
SQ-flist = {M(W, H)} ;
HR-flist = VR-flist =@ ;
} else {
if (A(w, h) == IFS }{
//insert allocated submesh into CFSL according to IFS type
Insert_CFSLQ) ;
} elsef
Deallocation() ; //deallocate allocated submesh
// reconstruct CFSL by searching for free submesh
Make_CFSL() ;
} //end if (A(w, h) == IFS)
} //end if( Alloc-list = &)
} //end

(Figure 5) Submesh deallocation algorithm

In (Figure 4), since Ai(<0, 0>, <1, 1>>) is an IFS that does
not affect the size of other free submeshes, it is inserted into
SQ-flist according to its type. The result of Ai(2, 2) deal-
location is illustrated in (Figure 6).
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(Figure 6) The result of Ai(2, 2) deallocation

Alloc-list and CFSL generated from (Figure 6) are as

follows :

o Alloc-list = {A;(<2, 0>, <2, 1>), As(<3, 0>, <7, 0>),

Ay(<0, 2>, <2, 5>) }, As(<0, 6>, <7, 7>) },
« SQ-flist = { S(<3, 1>, <7, 5>, Sx(<0, 0>, <1, 1>) },
» HR-flist = VR-flist = {@}.

5. Simulation Study

Through simulation, we showed that CFSL allocation
strategy performs better compared to the FSL allocation
strategy with respect to submesh search time. Kim and Yoon
[15] showed that FSL allocation method is better than ADJ
[11] and FL [13] allocation methods. In this paper, therefore,
the comparison of CFSL, ADJ [11], and FL [13] is omitted.

5.1 Simulation Environment

In simulation, we used a simulator, which was imple-
mented by C# that is an object oriented programming lan-
guage. Submesh and task having various attributes can be
implemented as objects in our simulator. The workload con-
sidered for simulation is characterized by the task arrival
distribution, the task size distribution, and distribution of the
task execution (service) time. The task arrival pattern is
assumed to follow the Poisson distribution [16], with an
arrival rate A. Under a given system load (0 < o < 1),
the task arrival rate (1) is determined as follows [17] :

p* N

task arrival rate(A) = ,
mer

where N is the number of processors in the mesh (N =
W X H), m is the mean number of processors in a submesh
request, and r is the mean execution time. Attributes of task
include size and execution time, and FCFS scheduling
decides the allocation order. The execution time is assumed
to follow exponential distribution with a given mean
execution time. The task size (the side lengths of a required
submesh) is assumed to follow a given distribution : either
uniform, normal, or exponential. Under normal distribution,
the mean of task size is assumed to be (H+1)/2 - (W+1)/2
and the variance as the half of the mean, ie, (H+1)/4 -
(W+1)/4 for a mesh(W xXH), where W and H means width
and height of the entire mesh structure. In exponential
distribution, the mean of task size is assumed to be same
as that of normal distribution.

52 Performance Analysis

The simulation was conducted under 95 percent confi-
dence level with an error range of £3 percent and 300,000
tasks for each run of the simulation. We have assumed a



square mesh system for simplicity of plotting. The perfor-
mance is measured in terms of the mean search time. We
define mean search time as follows.

® Mean search time : The average time elapsed on sea-
rching for the best-fit submesh for a task.

The first simulation was performed to measure the mean
search time by varying the offered system load in the range
from 0.1 to 1.0 for the 256 X256 mesh. (Figure 7) gives the
results for exponential (Exp), uniform (Uni), and normal
(Nor) distributions, when the system load ranges from 0.1
to 0.55, to obtain better scaling factor because all the st-
rategies are saturated for loads greater than 0.55.

0080 s o —e—

CFSL (Uni) ~ll—
0055 CFSL (Nor) —&—
FSL (Exp) - -O--
0.050 FSL(Uni) ~4F-
FSL(Nor) = -~

0045
0040
0035
0030
0025
0020
0015

Mean search time (msecs)

010 020 030 040 045 050
System load

(Figure 7) Mean search time vs. System load (N=256x256).

In (Figure 7), CFSL allocation scheme outperforms in all
system loads. When the system load is small, the difference
between mean search times of two allocation schemes is not
large, but as the system load increases, the difference
becomes larger. If the system load is small, the submesh
search time is also small because the number of submeshes
being divided is small. As a consequence, the difference of
mean search time between CFSL and FSL allocation scheme
is not large. But as the system load increases, because the
number of submeshes being divided after submesh allocation
also increases, the submesh search time increases. In this
case, CFSL allocation scheme can reduce the submesh
search time using the CFSL with the same type as that of
given task, compared to FSL. In (Figure 7) for the Exp case,
we can see that the mean search time of FSL allocation
scheme saturates more rapidly than the CFSL allocation sc-
heme, and also the mean search time difference grows. The-
refore, we can conclude that CFSL allocation scheme is bet-
ter than FSL allocation scheme as the system load increases.

The second simulation was performed to measure the
mean search time by varying the size of the mesh from 16 X
16 to 512 X512, (Figure 8) shows the results for system loads

EiA3Q MEDNISS REY 2F00 7|88 M207 SEUY 649

0.48.
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16 32 64 128 256 512
Size of Mesh(each side)

(Figure 8) Mean search time vs. size of the mesh ( 0 =0.48).

As can be seen from the (Figure 8), CFSL allocation sc~
heme performs well in every mesh size. For Uni and Nor
cases, the difference of the mean search time does not be-
come notably larger as the mesh size increases. By the way,
for the Exp case, the difference of the mean search time
becomes larger as mesh size increases. When the system
load is 0.48, CFSL allocation scheme reduced mean search
time, compared to FSL allocation scheme, as much as 104~
19.2%, 8.2~13%, and 2.9~10.3% for Exp, Uni, and Nor ca-
ses, respectively. In (Figure 8), for the Exp case, when the
mesh size is above 256X 256, the mean search time of FSL
allocation scheme increases dramatically. Aslo, for the Exp
case, the mean search time is larger compared to other pro-
bability distributions. For the Uni, and Nor cases, the rate
of tasks out of the whole tasks of which the sizes are above
half the size of entire mesh is about 15%, but for the Exp
case, the rate is about 3%. This implies that there are many
smaller tasks in the Exp case, compared to Nor or Uni case.
If the size of task is small, it is likely that they can be
processed simultaneously. As the number of free submeshes
that is divided in allocated submesh increases, the mean
search time for the best-fit free submesh increases also. But
CFSL allocation scheme reduces the submesh search time
by classifying IFS according to the types (square, horizontal
rectangle, vertical rectangle) and searching the best-fit
submesh from the CFSL.

6. Conclusions

In this paper, a new processor allocation strategy called
CFSL allocation scheme is proposed so submesh search time
can be reduced for the purpose of improving the performance
of mesh-~connected multicomputer system. This scheme
reduces the submesh search time by classifying independent
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free submeshes according to the types (square, horizontal
rectangle, vertical rectangle) and searching the best-fit
submesh from the CFSL. When it fails to find a submesh,
after the size of each submesh is expanded using expansion
index, which is stored as an attribute of each submesh. Then,
the best—fit submesh is chosen.

Through simulation, we can conclude that CFSL performs
better than the previous strategies, regardless of system
loads and mesh sizes. When the system load was 0.48, CFSL
reduced the mean search time as much as 10.4~19.2%, 8.2~
13%, and 2.9~10.3% for exponential, uniform, and normal
distribution cases, respectively.

CFSL allocation scheme was proved to be efficient com-
pared to the previous method in reducing the submesh se-
arch time. Our future work is to develop a new scheduling
method other than FCFS which has been used for this work
and to test it.
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