DOI QR코드

DOI QR Code

Numerical Prediction of Ship Induced Wave and its Propagation Using Nonlinear Dispersive Wave Model

비선형분산파랑모형을 이용한 항주파의 발생과 전파에 관한 수치예측모형 개발

  • Shin, Seung-Ho (Department of Marine environment and Engineering, Port and Airport Research Institute) ;
  • Jeong, Dae-Deug (Department of Maritime transportation system, Mokpo Maritime University)
  • 신승호 (일본 항만공항기술연구소 해양ㆍ수공부) ;
  • 정대득 (목포해양대학교 해상운송시스템공학과)
  • Published : 2003.12.01

Abstract

The characteristics of ship induced waves caused by navigation become widely different from both ship's speed and water depth condition. The ship induced waves specially generated in coastwise routes frequently give rise to call unforeseen danger for swimmers and small boats as well as shoreline erosion or sea wall destruction in coastal zones. The main concern of ship induced wave study until now is either how to reduce ship resistance or how to manoeuvre the ship safely under a constant water depth in the view point of shipbuilding engineers. Moreover, due to the trends for appearance of the high speed ships at the shallow coastal water, we are confronted with the danger of damages from those ship induced waves. Therefore, it is necessary to examine the development of ship induced waves and the influence of their deformation effects according to its propagation ray. In present study, in order to predict the development of the ship induced waves and their propagation under the conditions of complicate and variable shallow water depth with varying ship's speed, we constructed a computer model using Boussinesq equation with a fixed coordinate system and verified the model results by comparison with experimental results. Additionally, the model was applied under the variable water depth based on actual passage and we then confirmed the importance of the variable water depth consideration.

선박의 항행에 의해 발생되는 항주파의 특성은 선박의 속도와 수심 조건에 따라 크게 달라진다. 연안 항로에서 발생된 항주파는 주변 해안으로 전파됨에 따라 항만 내의 정온 수역을 교란하여 정박 중인 소형선박, 수영객 등에 돌발적이고도 심각한 위험을 가져다 줄뿐만 아니가 해안의 침식, 호안의 결괴 등의 피해를 주기도 한다. 지금까지 항주파에 관한 연구의 관심사는 일정 수심 조건에 대해 조파저항이나 조선에 미치는 영향을 분석하는 등 주로 조선공학도의 관점에서 검토가 대상이 되어 왔으며, 가변 수심을 가진 실제 해역에 있어서의 항주파 발생과 전파에 기인한 주변 해역의 영향은 그다지 검토되지 못하였다. 최근 고속선 등의 발달로 인해 천해역에서의 항주파로 인한 인근 해역의 피해가 더욱 우려되고 있는 추세이다. 따라서 실제 수역에서의 항주파의 발달과 그 전파과정은 조사할 필요가 있는 것이다. 본 연구에서는 연안해역의 얕고 복잡한 수로와 다양한 선속 조건에 대한 항주파의 발생 및 전파를 예측하기 위하여 고정 좌표계에서 Boussinesq 방정식을 토대로 항주파 수치예측 모형을 구축하였다. 제안된 모형은 수리모형실험 결과와의 비교를 통하여 검증하였으며, 또한 실제 수로를 토대로 한 가변 수심역에 개발된 모형을 적용하여 수신 변화 고려의 중요성을 확인하였다.

Keywords

References

  1. 運輸省港灣局監修(1999), '港湾の施設の技術上の基準 . 同解說(上 . 下)', (社)日本港灣協會, pp. 132-138
  2. 片山裕之 . 佐蕂愼司(1993), 'Boussinesq 方程式を用をた不規則波の淺水 . 碎波変刑の計算法', 海岸工學論文集 第40卷, 日本土木學會, pp. 16-20
  3. 申 承鎬 . 高田榮治 . 人江 功 . 村上啓介(1999a), '非線形分散波動モデルの予測精度評価と線形波浪モデルの接續', 海洋開發論文集 第15권, 日本土木學會, pp. 345-350
  4. 申 承鎬 . 高田榮治 . 人江 功 . 吉田明德 (1999b), 'Bouss inesqモデルを用いた沖合の構造物による波浪 . 海浜流の數値計算の適用性', 海岸工學論文集 第46卷, 日本土木學會, pp. 206-210
  5. 申 承鎬 . 人江 功 (2000), '非線形分散波動理論を用いた波浪 . 海浜流の計算法とその適用性の檢討', 九州大學工學集報 第73卷 第4号, pp. 319-327
  6. Chen, X. N. and S. D. Sharma (1995), 'A Slender ship moving at a near-critical speed in a shallow channel', Journal of Fluid Mechanics, Vol. 291, pp. 263-285 https://doi.org/10.1017/S0022112095002692
  7. Doorn, N., J. Groeneweg, O. Weiler and M. Borsboom(2002), 'Numerical Modeling of Ship-Induced Wave Propagation', Proc. of the 28th International Conference on Coastal Engineering, ASCE, pp. 689-701
  8. Ertekin, R. C., W. C. Webster and J. V. Wehausen (1985), 'Ship-generated solitons', Proc. of the 15th Sym p. Nav. Hydrodyn. Hamburg, pp. 347-364
  9. Havelock, T. H. (1908), 'The Propagation of Groups of Waves in Dispersive Media with Application to Waves on Produced by a Travelling Disturbance', Proc. Royal Society Series A, LXXXI, pp. 398-430
  10. Kirk, M. M. (1998), 'Investigation of High Speed Craft on Routes near to Land or enclosed Estuaries', Research Project 420, Maritime & Coast Guard Agency
  11. Kofoed-Hansen, H. (1996), 'Technical Investigation of Wake Wash from Fast Ferries - Summary & Conclusions', 5012, Danish Hydraulic Institute, Horsholm, Denmark
  12. Kelvin W. T. (1887), 'On ship waves', Proc. of the Institution of Mechanical Engineers
  13. Madsen, P. A. and O. R. Sorensen (1992), 'A new for m of the Boussinesq equations with improved linear dispersion characteristics, Part 2', Coastal Engineering, Vol. 18, pp. 183-204 https://doi.org/10.1016/0378-3839(92)90019-Q
  14. MarCom Working Group 41 (2002), 'Guidelines for managing wake wash from High Speed Vessel', Draft report PIANC MarCom WG 41, Revised 2, International N avigation Association
  15. Peregrine, D. H. (1967), 'Long waves on a beach', Journal of Fluid Mechanics, Vol. 27, pp. 815-827 https://doi.org/10.1017/S0022112067002605
  16. Raven, H. C. (2000), 'Numerical Wash Prediction Using a Free-surface Panel Code, Hydrodynamics of High Speed Craft Wake Wash & Motion Control', The Royal Institution of Naval Architects, London, pp. 1-12
  17. Tanimoto, K., H. Kobayashi and V. T. Ca (2000), 'Ship Waves in a Shallow and Narrow Channel', Proc. of the 27th International Conference on Coastal Engineering, ASCE, pp. 1141-1154
  18. Tuck, E. O. (1966), 'Shallow-water flow past slender bodies', Journal of Fluid Mechanics, Vol. 26, pp. 81-95 https://doi.org/10.1017/S0022112066001101

Cited by

  1. Wave Run-up Characteristics of Ocean Wave, Current, and Kelvin Wave Interaction in the Canal vol.27, pp.4, 2013, https://doi.org/10.5574/KSOE.2013.27.4.055
  2. On Propagation of Ship Induced Waves in 3-D Numerical Wave Basin with Non-Reflected Wave Generation System vol.25, pp.6, 2011, https://doi.org/10.5574/KSOE.2011.25.6.023