Dispersal Polymorphisms in Insects-its Diversity and Ecological Significance

곤충의 분산다형성-그의 다양성과 생태학적 의의

  • 현재선 (농촌진흥청 농업과학기술원 작물보호부 농업해충과)
  • Published : 2003.12.01

Abstract

Dispersal polymorphism in insects Is a kind of adaptive strategy of the life history together with the diapause, consisting of the “long-winged or alate forms” of migratory phase and the “short-winged or apterous forms” of stationary phase. Dispersal polymorphism is a polymorphism related with the flight capability, and has three categories ; the wing polymorphisms, flight muscle polymorphisms, and flight behavior variations. Phase variation is another type of dispersal polymorphism varying in morphology, physiology and wing forms in response to the density of the population. The dispersal migration is a very adaptive trait that enables a species to keep pace with the changing mosaic of its habitat, but requires some costs. In general, wing reduction has a positive effect on the reproductive potential such as earlier reproduction and larger fecundity The dispersal polymorphism is a kind of optimization in the evolutionary strategies of the life history in insects; a trade-off between the advantages and disadvantages of migration. Wing polymorphism is a phenotypically plastic trait. Wing form changes with the environmental conditions even though the species is the same. Various environmental factors have an effect on the dispersal polymorphisms. Density dependent dispersal polymorphism plays an important role In population dynamics, but it is not a simple function of the density; the individuals of a population may be different in response to the density resulting different outcomes in the population biology, and the detailed information on the genotypic variation of the individuals in the population is the fundamental importance in the prediction of the population performances in a given environment. In conclusion, the studies on the dispersal polymorphisms are a complicated field in relation with both physiology and ecology, and studies on the ecological and quantitative genetics have indeed contributed to understanding of its important nature. But the final factors of evolution; the mechanisms of natural selections, might be revealed through the studies on the population biology.

곤충의 분산다형성이란 비상능력과 관련된 다형성으로 그 구체적 내용으로는 시다형성, 비상근다형성 그리고 비상행동변이성 등과 이들과는 별개로 개체군 밀도의존적인 상변이성이 있다. 분산다형성은 시간적으로나 공간적으로 이질적인 서식처 환경에 대응하기 위하여 이동형인 “유시형이나 장시형”과 정주형인 “무시형이나 단시형”을 생활사에 적절히 짜넣은 적응적 형질이다. 점변태곤충류에서는 유충과 성충의 생태학적지위가 중복되여 있어 유충과 성충이 생활공간과 그 밖의 요구조건을 달리하고 있는 완전변태류나 반변태류에 비하여 분산다형성의 예가 대단히 많다. 무시형 또는 단시형곤충은 같은 종의 유시형 또는 장시형곤충에 비하면 초산연령이 빠르고 총산란수도 많은 것이 보통이여서 자연증가율(r)이 크다. 단시형과 관련된 환경요인으로는 서식처의 시간적 영속성이나 공간적 이질성, 먹이조건, 개체군밀도, 온도, 일장 기타 여러 가지가 알려지고 있다 서식처의 환경조건에 대한 분산다형성발현상은 종에 따라 다를 뿐 아니라 암수간에도 차가 있고 같은 종에서도 계통간에 차가 있는 극히 탄력적인 현상이다. 분산다형성의 문제는 생리학, 유전학 그리고 생태학등에 걸친 폭넓은 학문분야로 특히 생태유전학이나 정량유전학분야치 연구는 분산다형성의 유전적본질 구명에 중요하다 하겠다.

Keywords

References

  1. Ammar, E.D. 1973. Factors related to the two wing forms in lavesella pellucida (FAB.) (Homoptera: Delphacidae) J. Ang. Ent. 74: 211-216 (Cited from Roff, 1986)
  2. Anderson, N.M. 1973. Seasonal polymorphism and developmental changes in organs of flight and reproduction in bivoltine pondskaters, (Hem. Gerridae). Entomol. Scand. 4: 1-20 https://doi.org/10.1163/187631273X00011
  3. Aukema, B. 1990. Wing-length determination in two wing-dimorphic Calathus species (Coleoptera: Carabidae). Hereditas 113: 189-202 (Cited from Fujisaki, 1994) https://doi.org/10.1111/j.1601-5223.1990.tb00084.x
  4. Carter, A. 1976. Wing polymorphism in insect species, Agonum retractum Leconte. (Coleoptera: Carabidae). Can. J. Zool. 54: 1375-1382 https://doi.org/10.1139/z76-155
  5. Caswell, G.H. 1960. Observation on the abnormal form of Callosobruchus maculatus (F.). Bull. Entomol. Res. 50: 671-680 https://doi.org/10.1017/S0007485300054705
  6. Crespi, B.J. 1988. Adaptation, compromise, and constraint: the development, morphometries, and behavioural basis of a fighter-flier polymorphism in male Hoplothrips karnyi (Insecta: Thysanoptera). Behav. Ecol. Sociobiol. 23: 93-104 https://doi.org/10.1007/BF00299892
  7. Crnokrak, P. and D.A. Roff. 1995. Fitness differences associated with calling behavior in the two wing morphs of male sand Crickets, Gryllusfirmus. Anim. Behav. 50: 1475-1481 https://doi.org/10.1016/0003-3472(95)80004-2
  8. Denno, R.F., G.K. Roderick, K.L. Olmstead and H.G. Dobel. 1991. Density-related migration in planthopper (Homopera: Delphacidae): The role of habitat persistence. The Amer. Nat. 138: 1513-1541 https://doi.org/10.1086/285298
  9. Denno, R.F. 1994. The evolution of dispersal polymorphisms in insects. The influence of habitats, host plants, and mates. Res. Popul. Ecol. 36: 127-135 https://doi.org/10.1007/BF02514927
  10. Dingle, H. 1966. Some factors effecting flight activity in individual milk weed bugs (Oncopeltus). J. Exp. BioI. 44: 335-343 (Cited from Roff and Fairbairn, 1991)
  11. Dingle, H. and G. Arora. 1973. Experimental studies of migratory in bugs of the genus, Dysdercus. Oecologia 12: 119-140 https://doi.org/10.1007/BF00345512
  12. Dixon, A.F.G. and S.D. Wratten. 1971. Laboratory studies on aggregation, size and fecundity in the black bean aphid, Aphis fabae Scop. Bull. Entomol. Res. 61: 97-111 https://doi.org/10.1017/S0007485300057485
  13. Dixon, A.F.G., S. Horth and P. Kindlmann. 1993. Migration in insects: cost and strategies. J. Anim. Ecol. 62: 182-190 https://doi.org/10.2307/5492
  14. Fairbairn, D.J. and T.C. Butler. 1990. Correlated traits for migration in the Gerridae (Hemiptera, Heteroptera) : a field test. Ecological Entomology 15: 131-142 I Cited from Fujisaki 1994) https://doi.org/10.1111/j.1365-2311.1990.tb00794.x
  15. Fairbrairn, D.J. and D.A. Roff. 1990. Genetic correlations among traits determining migratory tendency in the sand cricket, Gryllusfinnus. Evolution 44: 1787-1795 https://doi.org/10.2307/2409507
  16. Fugisaki, K. 1994. Adaptive significance and Evolution of dispersal polymorphisms in insect. Gazette in Agri. Sci. Okayama University 83: 113-132 (In Japanese with English summary)
  17. Fujisaki, K. 1989. Wing from determination and sensitivity of stages to environmental factors in the oriental chinch bug, Cavelerius saccharivorus Okajima (Heteroptera: Lygaeidae). Appl. Entomol. Zool. 24: 287-294
  18. Fujisaki, K. 1992. A male fitness advantage to wing reduction in the oriental chinch bug, Cavelcrius saccharivorus Okajima (Heteroptera: Lygaeidae). Res. Popul. Ecol. 34: 173-183 https://doi.org/10.1007/BF02513529
  19. Fujisaki, K. 1993. Genetic correlation of wing polymorphism between females and males in the oriental chinch bug, Cavelerius saccharivorus Okajima (Heteroptera: Lygaeidae). Res. Popul. Ecol. 35: 317-324 https://doi.org/10.1007/BF02513603
  20. Fujisaki, K. 1994. Evolution of dispersal polymorphisms in insects: A close examination of RoWs theory. Jan. J. Appl. Entomol. Zool. 38: 231-244 (In Japanese) https://doi.org/10.1303/jjaez.38.231
  21. Fujisaki, K. 1996. Function and evolution of wing polymorphism. Plant Protect. 50: 211-264 (In Japanese).
  22. Gatehouse, A.G. 1986. Migration in the African armyworm Spodoptera exempta: genetic determination of migratory capacity and a new synthesis. In insect Flight: Dispersal and migration (W. Danthanarayana, ed.) pp. 128-144, Springer-Verlag, Berlin (Cited from Fujisaki, 1994)
  23. Gomi, T., T. Okuda and S. Tanaka 1995. Protein synthesis and degradation in the flight muscles of adult crickets (Gryllus bimacultus). J. Exp. BioI. 198: 1071-1077
  24. Hackman, W. 1966. On wing reduction and loss of wings in Lepidoptera. Notulae Entomologica 46: 1-16 (Cited from Roff,1990)
  25. Hamilton, W.D. and R.M. May. 1977. Dispersal in stable habitats. Nature 269: 578-581 https://doi.org/10.1038/269578a0
  26. Harrison, R.G. 1980. Dispersal polymorphisms in insects. Ann. Rev. Ecol. Sys. 11: 95-118 https://doi.org/10.1146/annurev.es.11.110180.000523
  27. Iwanaga, K., F. Nakasuji and S. Tojo. 1987. Wing polymorphism in Japanese and foreign strains of the brown planthopper, Nilaparvata lugens. Entomol. Exp. Appl. 43: 3- I0 (Cited from Kishimoto, 1996) https://doi.org/10.1007/BF00350367
  28. Iwao, S. 1962. Studies on the phase variation and related phenomena in some lepidopterous insects. Mem. ColI. Agr., Kyoto Univ. 84: 1-80 (Cited from Fujisaki, 1994)
  29. Iwao, S. 1967. Phase variation in the grasshoppers and noctuidae. Plant Protect. 21: 228-237 (In Japanese).
  30. Iwao, S. 1967. The phase variations in locust and noctuid moth. Plant Protect. 21: 228-237 (In Japanese)
  31. Jackson, D.L. 1928. The inheritance of long and short wings in the weevil, Sitona hispidula, with a discussion of wing reduction among beetles. Tans. Roy. Soc. Edinburgh 55: 665-735 https://doi.org/10.1017/S0080456800013351
  32. Jackson, D.L. 1933. Observations on the flight muscles of Sitona weevils. Ann. Appl. BioI. 20: T:,I-769 (Cited from Harrison,1980) https://doi.org/10.1111/j.1744-7348.1933.tb07425.x
  33. Johnson, C.G. 1969. Migration and dispersal of insects by flight. Methuen, London
  34. Kimura, T. and S. Masaki. 1977. Brachypterian and seasonal adaptation in Orgyea ithyellina Butler (Lepidoptera, Lymantridae)Kontyu. 45: 97-106
  35. Kishimoto, R. 1965. Polymorphism in the brown planthopper and its roles in the population increase. Bull. Kyushu Agr. Exp. Sta. 13: 1-106. (In Japanese with english summary).
  36. Kishimoto, R. 1989. 1st Asia-Pacific conference on Entomology., Abstract. 9. (Cited from Kishimoto, 1996)
  37. Kishimoto, R. 1996. Wing polymorphism in planthoppers, Delphacidae, Its Diversity and Adaptive meanings. Plant Protect. 50: 255-260 (In Japanese)
  38. Manjunath, T.H. 1972. Biological studies on Trichogammatoidea armigera, Nagaraja, a new dimorphic egg parasite of Heliothis armigera (Hubner) in India. Entomophaga 17: 131-147 https://doi.org/10.1007/BF02371125
  39. Mittel', C., D.J. Futuyama, J.C. Schneiderand and J.D. Hare. 1979. Genetic variation and host plant relations in a parthenogenetic moth. Evolution 33: 777-790 (Cited from Roff, 1990) https://doi.org/10.2307/2407645
  40. Mochida, O. 1973. The characters of the two wing-forms of lavesella pollucida (F.) (Homoptera: Delphacidae), with special reference to reproduction. Trans. R. Entomol. Soc. London 125: 177-225
  41. Mole, S. and A.S. Zera. 1993. Differential allocation of resources underlies the dispersal-reproduction trade-off in the wing-dimorphic cricket, Gryllus rubens. Oecologia 93: 121-127
  42. Mori, K. and F. Nakasuji. 1991. Effects of day length and density on development and wing form of the small brown planthopper, Laodelphax striatellu (Hemiptera: Delphacidae). Res. Popul. Ecol. 32: 279-287 https://doi.org/10.1007/BF02512563
  43. Mori, K. and F. Nakasuji. 1991. Inheritance of body coloration in the small brown planthopper, Laodelphax striatellus (Hemiptera: Delphacidae). Appl. Ent. Zool. 26: 551-555
  44. Morooka, N. 1992. Genetic control of wing length in the brown planthopper. Bull. Pop. Ecol. 49: 12-14 (In Japanese with English summary)
  45. Muraji, M. and F. Nakasuji. 1988. Comparative studies on life history traits of three wing dimorphic water bugs, Microvelia spp. Westwood (Heteroptera: Veliidae). Res. Popul. Ecol. 30: 315-327 https://doi.org/10.1007/BF02513252
  46. Ooshiro, Y. 1981. Studies on the population dynamics of Cavelerius saccharivorus (Okajima) (Heteroptera, Lygaidae). II. Effects of temperature, day length and densities on the production of macropter. Kontsu 49: 385-389 (In Japanese with English summary)
  47. Parker, W.E. and A.G. Gatehouse. 1985. The effect of larval rearing conditions on flight performance in females of the African armyworm, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae). Bull. Ent. Res. 75: 35-47 https://doi.org/10.1017/S0007485300014152
  48. Partridge, L. and P.H. Harvey. 1988. The ecological context of life history evolution. Science 241: 1449-1455 https://doi.org/10.1126/science.241.4872.1449
  49. Rankin, M.A. and J.C.A. Burchsted. 1992. The cost of migration in insect. Ann. Rev. Entomol. 37: 533-559 https://doi.org/10.1146/annurev.en.37.010192.002533
  50. Reznick, D. 1985. Costs of reproduction: an evolution of the empirical evidence. Oikos 44: 257-267 https://doi.org/10.2307/3544698
  51. Roderick, G.R. 1996. Geographic structure of insect populations:gene flow, phylogeography, and their uses. Ann. Rev. Entomol. 41: 325-352 https://doi.org/10.1146/annurev.en.41.010196.001545
  52. Roff, D.A. 1986. The evolution of wing dimorphism in insects. Evolution 40: 1009-1020 https://doi.org/10.2307/2408759
  53. Roff, D.A. 1989. Exaptation and the evolution of de-alation in insects. J. Evol. BioI. 2: 109-123 (Cited from Fujisaki, 1994) https://doi.org/10.1046/j.1420-9101.1989.2020109.x
  54. Roff, D.A. 1990. Antagonistic pleiotropy and the evolution of wing dimorphism in the sand cricket, Gryllus firmus. Heredity 65: 169-177 https://doi.org/10.1038/hdy.1990.85
  55. Roff, D.A. 1990. The evolution of flightlessness in insects. Ecological Monographs 60: 389-421 https://doi.org/10.2307/1943013
  56. Roff, D.A. 1994. Habitat persistence and the evolution of wing dimorphism in insects. Amer. Nat. 144: 772-798 https://doi.org/10.1086/285706
  57. Roff, D.A. ann D.J. Fairbairn. 1991. Wing dimorphisms and the evolution of migratory polymorphisms among the insecta. Amer. Zool. 31: 243-251
  58. Roff, D.A. and D.J. Fairbairn. 1993. The evolution of alternate morphologies : fitness and wing morphology in male sand crickets. Evolution 47: 1572-1584 https://doi.org/10.2307/2410168
  59. Rose, D.J.W. 1972. Dispersal and quality in populations of Cicadulina species (Cicadellidae). J. Anim. Ecol. 41: 589-609 https://doi.org/10.2307/3197
  60. Scudder, G.G .E. and J. Meredith. 1972. Temperature-induced development in the indirect flight muscle of adult Cenocorixa (Hemiptera: Corixidae). Developmental Entomology 29: 330336
  61. Shaw, M.J.P. 1970. Effects of population density on alienocolae of Aphis fabae Scop. I. the effect of crowding on the production ofalatae in the laboratory. Ann. Appl. BioI. 65: 191-196 https://doi.org/10.1111/j.1744-7348.1970.tb04578.x
  62. Shaw, M.J.P. 1970. Effects of population density on alienocolae of Aphis fabae Scop. II. the effects of crowding on the expression of migratory urge among alatae in laboratory. Ann. Appl. BioI. 65: 197-203 https://doi.org/10.1111/j.1744-7348.1970.tb04579.x
  63. Shaw, M.J.P. 1970. Effects of population density on alienoco1ae of Aphis fabae Scop. III. the effect of isolation on the development of form and behavior in a laboratory clone. Ann. Appl. BioI. 65: 205-212 https://doi.org/10.1111/j.1744-7348.1970.tb04580.x
  64. Shaw, M.J.P. 1970. Effects of population density on alienocolae of Aphis fabae Scop. IV. the expression of migratory urge among alatae in the field. Ann. Appl. BioI. 74: 1-7
  65. Shaw, M.J.P. 1970. Effects of population density on alienocolae of Aphis fabae Scop. V. variations in size, relative wing length and numbers of antennal sensoria of field alatae. Ann. Appl. BioI. 74: 9-16
  66. Solbrcck, C. 1986. Wing and flight muscle polymorphism in a lygaeid bug, Horvathiolus gibbicollis: determinants and life history consequences. Ecological entomology 11: 435-444 https://doi.org/10.1111/j.1365-2311.1986.tb00322.x
  67. Solbreck, C., D.B. Anderson and J. Forare. 1990. Migration and the coordination of life cycles as exemplified by 1ygaeinae bugs. In insect life cycles: Genetics, Evolution and Co-ordination (F.Gilbert, ed.), pp. 197-214, Spring-Verlag, New York (Cited from Fujisaki, 1994)
  68. Southwood. T.R.E. 1977. Habitat, the templet for ecological strategies? J. Anim. Ecol. 46: 337-365
  69. Statzner B., A.G. Hildrew and V.H. Resh. 2001. Species traits and environmental constraints: Entomological research and the history of ecological theory. Ann. Rev. Entomol. 46: 291-316 https://doi.org/10.1146/annurev.ento.46.1.291
  70. Stearns, S.C. 1976. Life history tactics: A review of the ideas. Quart. Rev. BioI. 51: 3-47 https://doi.org/10.1086/409052
  71. Tada, S., A. Yamamoto and J. Nishigaki. 1991. Flight muscle dimorphism of female adults in the yellowish elongate chafer, Heptophylla picea Motschulsky (Coleoptera: Scarabaeidae). Appl. Entomol. Zool. 26: 515-521
  72. Tada, S., S. Tsutsurni, M. Hatsukade, K. Honrna, K. Fujisaki and F. Nakasuji. 1993. Sexual difference in flight abilities and flight muscle dimorphism in female adults of a chafer, Anomala schonfeldti Ohaus (Coleoptera: Scarabaeidae). Appl. Entomol. Zool. 28: 33-338
  73. Tanaka, S. 1986. De-alation, flight muscle histolysis, and oocyte development in a wing dimorphic cricket, Modicogryllus confirmatus. J Insect Physio. 39: 493-498
  74. Tanaka, S. 1991. Genetic compatibility and geographic profile of two closely related species of Allonemobius (Gryllidae: Orthoptera). Ann. Ent. Soc. Amer. 84: 29-36
  75. Tanaka, S. 1994. Endocrine control of ovarian development and flight muscle histolysis in a wing dimorphic cricket, ModicogrylIus confirmatus. J. Insect Physiol. 40: 483-490 https://doi.org/10.1016/0022-1910(94)90121-X
  76. Tanaka, S. 1996. Physiological characteristics of wing dimorphism in insects : Trade-offs between reproduction and migration. Plant Protect. 50: 265-268 (In Japanese).
  77. Taylor, V.A. 1981. The adaptive and evolutionary significance of wing polymorphism and pathenogenesis in Ptinella motschulsky (Colleoptera: ptillidae). Ecol. Entomol. 6: 89-98 (Cited from Roff,1986) https://doi.org/10.1111/j.1365-2311.1981.tb00975.x
  78. Tojo, S. 1991. Variation in phase polymorphism in the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Appl, Entomol. Zool. 26: 571-578
  79. Uvarov, B.P. 1921. A revision of the genus Locusta L. (PachytyIus Fieb.) with a new theory as to the periodicity and migration of locusts. Bull. Ent. Res. 12: 135-163 (Cited from Fujisaki,1994) https://doi.org/10.1017/S0007485300044989
  80. Yamada, S. 1991. Dual wing form determination mechanism in the brown planthopper, Nilaparvata lugens Stal (Homoptera: Delphacidae). Appl. Entomol. Zool. 26: 590-592
  81. Young, E.C. 1965. Flight muscle polymorphism in British Corixidae and description of the morphs. J. Zool. 146: 567-576 (Cited from Fujisaki, 1994)
  82. Zera A.J. and M.A. Rankin. 1989. Wing dimorphism in Gryllus rubens: genetic basis of morph determination and fertility differences between morphs. Oecologia 80: 249-255
  83. Zera, A.J. and S. Mole. 1994. The physiological costs of flight capability in wing-dimorphic cricket. Res. Popul. Ecol. 36: 151-159 https://doi.org/10.1007/BF02514930
  84. Zera, A.J., S. Mole, and K. Rokke. 1994. Lipid carbohydrate and nitrogen content of long-and short-winged Gryllus firmus: Implications for the physiological cost of flight capability. J. Insect Physiol. 40: 1037-1044 https://doi.org/10.1016/0022-1910(94)90056-6