DOI QR코드

DOI QR Code

Seismic Response of a High-Rise RC Bearing-Wall Structure with Irregularities of Weak Story and Torsion at Bottom Stories

저층부에 약층과 비틀림 비정형성을 가진 고층 비정형 RC벽식 구조물의 지진응답

  • Published : 2003.12.01

Abstract

Recently, many high-rise reinforced concrete(RC) bearing-wall structures of multiple uses have been constructed, which have the irregularities of weak(or soft) story and torsion at the lower stories simultaneously. The study stated herein was performed to investigate seismic performance of such a high-rise RC structure through a series of shaking table tests of a 1: 12 model. Based on the observations of the test results, the conclusions are drawn as follows: 1) Accidental torsion due to the uncertainty on the properties of structure can be reasonably predicted by using the dynamic analysis than by using lateral force procedure. 2) The mode coupled by translation and torsion induced the overturning moments not only in the direction of excitations but also in the perpendicular direction: The axial forces in columns due to this transverse overturning moment cannot be adequately predicted using the existing mode analysis technique, and 3) the hysteretic curve and the strength diagram between base shear and torque(BST) clearly reveal the predominant mode of vibrations and the failure mode.

최근 우리나라의 대도시에서는 주거와 상업기능을 동시에 갖는 복합용도의 건축물이 많이 건설되고 있는데, 이러한 건물은 대부분 하부골조에서 연층, 약층 또는 비틀림 비정형을 띠게 된다. 본 논문의 목적은 이러한 건물의 지진응답을 실험을 통해 관찰하는 것으로서 1:12 축소모델의 진동대 실험을 통해 다음과 같은 결론에 이르렀다. 1) 구조물의 불확실성으로 인한 우발비틀림을 예측하는 것은 정적해석에 의한 방법보다 동적해석에 의한 방법이 더 타당하였다. 2) 횡운동과 비틀림운동이 연관되어 있을 때, 전도모멘트는 지진방향 뿐만 아니라 지진방향에 수직인 방향으로도 상당부분 작용하였으며, 일반적인 해석프로그램에서 수행하는 모드해석법으로는 이와 같은 거동을 예측하기에 부적절하였다. 3) 모드형상과 BST 다이아그램을 통해 대상구조물과 같은 건물의 주요 진동모드와 파괴양상을 쉽게 예측할 수 있었다.

Keywords

References

  1. Lee et al., “Shaking Table Tests of a High RC Bearing-Wall Structrure with Bottom Piloti Stories,” Journal of Asian Architecture and Building Engineering, Vol. 1 No. 1, 2002, pp. 47-54. https://doi.org/10.3130/jaabe.1.47
  2. Lee et. al, “Effect of Shear Walls on Seismic Performence of Piloti-Type High-Rise RC Bearing-Wall Structures,” Structural Engineers World Congress 2002, 2002, Yokohama.
  3. De la llera, J. C. and Chopra, A. K., “Understanding the inelastic seismic behaviour of asymmetric-plan buildings,” Earthquake Engineering and Structural Dynamics, Vol. 24, 1995, pp. 549-572. https://doi.org/10.1002/eqe.4290240407
  4. Tso, W. K. et al., “Design of torsionlly unbalanced structural systems based on code provisions 1: ductility demand,” Earthquake Engineering and Structural Dynamics, Vol. 21, 1992, pp. 609-627. https://doi.org/10.1002/eqe.4290210704
  5. Rutenberg, A. et al., “Nonlinear response of asymmetric building structures; a state of the art review,” Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, Elsevier Applied Science, pp. 281-305.
  6. Chandler, A. M. et al. “Evaluation of factors influencing the inelastic seismic performance of torsionally asymmetric buildings,” Earthquake Engineering and Structural Dynamics, Vol. 20, 1991, pp. 87-95. https://doi.org/10.1002/eqe.4290200107
  7. 대한건축학회, 건축물 하중기준 및 해설, 대한건축학회, 2000.
  8. Hiroshi Hosoya, “Shaking Table Tests of Three-Dimensional scale Models of Reinforced Concrete High-Rise Frame Structures with Wall Columns,” ACI Structural Journal, Vol. 92, No. 6, 1995, pp. 765-780.
  9. Zia, P., Principles of Model Analysis, ACI SP-24, Michigan, 1970, pp. 19-39.
  10. 건설교통부, “내진설계기준연구(II)-내진설계성능기준과 경제성평가,” 건설교통부, 1997.
  11. International Code Council(ICC), International Building Code 2000, ICC.