DOI QR코드

DOI QR Code

W-Cu산화물 복합분말의 환원 기구에 관한 연구

A Study on the Reduction Mechanism of Tungsten and Copper Oxide Composite Powders

  • 이성 (국방과학연구소 기술연구본부 5부 1팀) ;
  • 홍문희 (국방과학연구소 기술연구본부 5부 1팀) ;
  • 김은표 (국방과학연구소 기술연구본부 5부 1팀) ;
  • 이성호 (국방과학연구소 기술연구본부 5부 1팀) ;
  • 노준웅 (국방과학연구소 기술연구본부 5부 1팀)
  • Lee, Seong (Technical Research Center, Agency for Defense Development) ;
  • Hong, Moon-Hee (Technical Research Center, Agency for Defense Development) ;
  • Kim, Eun-Pyo (Technical Research Center, Agency for Defense Development) ;
  • Lee, Sung-Ho (Technical Research Center, Agency for Defense Development) ;
  • Noh, Joon-Woong (Technical Research Center, Agency for Defense Development)
  • 발행 : 2003.12.01

초록

The reduction mechanism of the composite powders mixed with $WO_3$ and CuO has been studied by using thermogravimetry (TG), X-ray diffraction, and microstructure analyses. The composite powders were made by simple Turbula mixing, spray drying, and ball-milling in a stainless steel jar with the ball to powder ratio of 32 to 1 at 80 rpm for 1 h without process controlling agents. It is observed that all the oxide composite powders are converted to W-coated Cu composite powder after reducing treatment under hydrogen atmosphere. For the formation mechanism of W-coated Cu composite powder, the sequential reduction steps are proposed as follows: CuO contained in the ball-milled composite powder is initially reduced to Cu at the temperature range from 20$0^{\circ}C$ to 30$0^{\circ}C$. Then, $WO_3$ powder is reduced to W $O_2$ via W $O_{2.9}$ and W $O_{2.72}$ at higher temperature region. Finally, the gaseous phase of $WO_3(OH)_2$ formed by reaction of $WO_2$ with water vapour migrates to previously reduced Cu and deposits on it as W reduced by hydrogen. The proposed mechanism has been proved through the model experiment which was performed by using Cu plate and $WO_3$ powder.

키워드

참고문헌

  1. C. Zweben: J. of Metals, 7 (1992) 15.
  2. J. L. Johnson, K. F. Hens and R. M. Gennan : Tungsten and Refractory Metals-1994, A. Bose and R. Dowding (Eds.), Proc. of the 2nd Inter. Conf. on Tungsten and Refractory Metals, MPIF, Princeton, NJ, 1994,245.
  3. Z. Zhendong and H. Tingxian : Tungsten and Tungsten Alloys Recent Advances, A. Crowson and E. S. Chen (Eds.), Proc. of a symp. on Tungsten and Tungsten Alloys Recent Advances, TMS, Lousiana, NO, 1991, 349.
  4. W. T. Fu, Z. H. Rong, Z. J. Long and M. H. Wei : Proc. of the 13th Int. Symp. on Ballistics, (1992) 387.
  5. Y. Kai, C. Yamasaki, K. Yukuhiro and T. Okabe : Tungsten and Refractory Metals-1994, A Bose and R. Dowding (Eds.), Proc. of the 2nd Inter. Conf. on Tungsten and Refractory Metals, MPIF, Princeton, NJ, 1994,228.
  6. V. V. Panichkina, M. M. Sirotyuk and V. V. Skorokhod : Poroshk. Metall., 6 (1982) 27.
  7. A. Upadhyaya and R. M. German : lnt. J. of Powder Metallurgy, 34 (1998) 43.
  8. J. L. Johnson and R. M. Gennan : Met. Trans. A, 24A (1993) 2369. https://doi.org/10.1007/BF02646516
  9. S. Lee, M.-H. Hong, E. P. Kim, H. S. Song, J. W. Noh and Y. W. Kim : 대한금속학회지, 31 (1993) 234.
  10. T. H. Kim : W-Cu 나노 복합분말의 합성과 치밀화에 관한 연구, 한양대학교 박사학위논문 (1995)
  11. S. Lee : W-Cu 산화 복합분말의 환원거동과 활성원소에 의한 소결성
  12. L. P. Dorfman, M. J. Scheithauer, D. L. Houck and N. E. Nelson: U.S. Patent 5470549 (1995).
  13. A. K. Basu and F. R. Sale: J. Mat. Sci., 13 (1978) 2703. https://doi.org/10.1007/BF02402759
  14. P. Walkden, J. N. Albiston and F. R. Sale: Powder MetaIl, 28 (1985) 36. https://doi.org/10.1179/pom.1985.28.1.36
  15. Copper Base Powder Metallurgy, P. W. Paubenblat (Ed.), MPIF, Princeton, NJ (1980) 14.
  16. R. Haubner, W. D. Schubert, E. Lassner, M. Schreiner and B. Lux: RM and HM, 9 (1983) 108.
  17. R. Haubner, W. D. Schubert, H. Hellmer, E. Lassner and B. Lux: RM and HM, 12 (1983) 156.
  18. W. D. Schubert: RM and HM, 12 (1990) 178.