Strong fuzzy hyperK-subalgebra

Y.H.KIM, K.A.OH, T.E.JEONG

Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Chongju 360-763, Korea

Abstract

In this paper, we define a strong fuzzy hyperK-subalgebra and investigate between a strong fuzzy hyperK-subalgebra and a fuzzy hyperK-subalgebra. And then we give some properties of a weak homomorphism and a strong fuzzy hyperK-subalgebra.

Key Words: strong fuzzy hyperK-subalgebra, fuzzy hyperK-subalgebra, weak homomorphism.

1. INTRODUCTION

The hyper algebraic structure theory was introduced in 1934 by F. Marty [8] at the 8th Congress of Scandinavian Mathematicians. Since researchers have worked on this area. Recently, Y. B. Jun et al. [6] applied the hyperstructures BCK-algebras and introduced the concept of a hyperBCK-algebras which is a generalization of a BCK-algebra, and investigated some properties. They also introduced the notion of a hyperBCK-ideal and a weak hyperBCK-ideal, and gave relations between hyperBCK-ideals and weak hyperBCK-ideals. R. A. Brozoei et al. [1] defined the notion of a hyperK-algebra. Hyperstructures have many applications to several sectors of both pure and applied sciences. In this paper, we define a strong fuzzy HyperK-subalgebra and investigate between a strong fuzzy hyperK-subalgebra and a fuzzy hyperK-subalgebra. And then we give some properties of a weak homomorphism and a strong fuzzy hyperK-subalgebra.

2. PRELIMINARIES

established the notion of hyperI/hyperK-algebras as follows: By a hyperI-algebra we mean a nonempty set H endowed with a hyperoperation "o" and a constant 0 satisfying the following axioms:

(HII)
$$(x \circ z) \circ (y \circ z) \langle x \circ y,$$

(HI2)
$$(x \circ y) \circ z = (x \circ z) \circ y$$
,

(HI3) x < x,

(HI4) x < y and y < x imply x = y

접수일자 : 2002년 완료일차 : 2003년

R. A. Borzoei, A. Hasankhani and M. M. Zahedi

for all x, y, $z \in H$, where x < y is defined by $0 \in x \circ y$ and for every A, $B \subseteq H$, A < B is defined by $\exists a \in A$ and $\exists b \in B$ such that $a \land b$. If a hyperI- algebra (H;o, 0) satisfies

(HI5)
$$0 < x$$
 for all $x \in H$,

then $(H; \circ, 0)$ is called a hyperK-algebra, Let $(H; \circ,$ 0) be a hyperK-algebra and let S be a subset of H containing 0. If S is a hyperK-algebra with respect to the hyperoperation " \circ " on H, we say that S is a hyperK-subalgebra of H.

We now review some fuzzy logic concepts. A fuzzy set in a set X is a function $\mu : X \rightarrow [0, 1]$. For a fuzzy set μ in X and $\alpha \in [0,1]$, define $\bigcup (\mu; \alpha)$ to be the set $\bigcup (\mu; \alpha) := \{x \in X \mid \mu(x) \geq \alpha\}$, which is called a *level* set of μ .

In what follows, H denotes a hyperK-algebra unless otherwise specified.

Definition 2.1 ([3]). A fuzzy set μ In H is said to be a fuzzy hyperK-subalgebra of H it is satisfies the inequality:

$$\inf_{z \in x \circ y} \mu(z) \ge \min \{ \mu(x), \ \mu(y) \}$$

for all $x, y \in H$

Proposition 2.2 ([3]). Let μ be a fuzzy hyperKsubalgebra of H. Then $\mu(0) \ge \mu(x)$ for all $x \in H$.

Lemma 2.3 ([3]). Let S be a non-empty subset of H. Then S is a hyperK-subalgebra of H if and only if $x \circ y$ $\subseteq S$ for all $x, y \in S$.

Theorem 2.4 ([3]). Let μ be a fuzzy set in H. Then μ is a fuzzy hyperK-subalgebra of H if and only if for every $\alpha \in [0, 1]$ the non-empty level set $U(\mu; \alpha)$ of μ is a hyperK-subalgebra of H.

We then call $U(\mu; \alpha)$ a level hyperK-subalgebra of μ .

3. Strong fuzzy hyperK-subalgebra

Definition 3.1. A fuzzy set μ in H is said to be a strong fuzzy hyperK-subalgebra of H if it satisfies the inequality:

$$\inf_{z \in x \circ y} \mu(z) \ge \mu(x),$$

for all $x, y \in H$.

Proposition 3.2. Let μ be a strong fuzzy hyperK-subalgebra of H. Then $\mu(0) \ge \mu(x)$ for all $x \in H$.

Proof. Using (HI3), we see that $0 \in x \circ x$ for all $x \in H$. Hence $\mu(0) \ge \inf_{z \in x \circ x} \mu(z) \ge \mu(x)$, for all $x \in H$.

Example 3.3. Let $H = \{0, 1, 2\}$. Consider the following table:

0	0	1	2
0	{0}	{0}	{0}
1	{1}	{0, 1}	{0, 1}
2	{2}	{1, 2}	{0, 1, 2}

Then (H; \circ , 0) is a hyperK-algebra. Define a fuzzy set μ : $H \to [0, 1]$ by $\mu(0) = \mu(1) = \alpha_1 > \alpha_2 = \mu(2)$. Then μ is a fuzzy hyperK-subalgebra

Theorem 3.4. Let $(H; \circ, 0)$ be a hyperK-algebra Then every strong fuzzy hyperK-subalgebra of H is a fuzzy hyperK-subalgebra of H.

Proof. Since μ is a strong fuzzy hyperK-algebra, $\inf_{z \in x \circ y} \mu(z) \ge \mu(x)$, for all $x, y \in H$, Then $\inf_{z \in x \circ y} \mu(z) \ge \mu(x) \ge \min \{\mu(x), \mu(y)\}$ for all $x, y \in H$. Hence μ is a fuzzy hyperK-subalgebra of H.

Example 3.5. Let $H = \{0, 1, 2\}$. Consider the following table:

0	0	1	. 2
0	{0}	{0, 1, 2}	{0, 1, 2}
1	{1}	{0, 1, 2}	{0, 1, 2}
2	{2}	{1, 2}	{0, 1, 2}

Then $(H; \circ, 0)$ is a hyperK-algebra. Define a fuzzy set $\mu: H \to [0, 1]$ by $\mu(0) = 1$ and $\mu(1) = \mu(2) = 0$. Then μ is a fuzzy hyperK- subalgebra of H, but not a strong fuzzy hyperK-subalgebra of H, since $\inf_{\mathbf{z} \in 0 \circ 1} \mu(\mathbf{z}) = 0 / 1 = \mu(0)$

Theorem 3.6. Let μ be a strong fuzzy hyperK-subalgebra of H. Then for every $a \in [0,1]$ the non-empty level set $U(\mu;a)$ of μ is a hyperK-subalgebra of H.

Proof. Suppose that μ is a strong fuzzy hyperK-subalgebra of H and let $x, y \in U(\mu : a)$ for $a \in [0,1]$.

Let $z \in x \circ y$. Then

$$\mu(z) \ge \inf_{w \in x \circ v} \mu(w) \ge \mu(x) \ge \alpha,$$

and so $z \in U(\mu; \alpha)$. This shows that $x \circ y \subseteq U(\mu; \alpha)$ Hence $U(\mu; \alpha)$ is a hyperK-subalgebra of H.

Theorem 3.7. Let S be a non-empty subset of H and let μ_s be a fuzzy set in H defined by

$$\mu_s(x) := \begin{cases} \alpha_1 & \text{if } x \in S \\ \alpha_2 & \text{otherwise,} \end{cases}$$

for all $x \in H$ and $\alpha_1 > \alpha_2$ in [0,1]. Then μ_s is a strong fuzzy hyperK-subalgebra of H if and only if S is a hyperK-subalgebra of H.

Proof. Assume that $\mu_s \mu_s$ is a strong fuzzy hyperK-subalgebra of H and let $x, y \in S$. Then $\mu_s(x) = \alpha_1 = \mu_s(y)$. For any $z \in x \circ y$ we have

$$\mu_s(z) \ge \inf_{w \in x \circ y} \mu_s(w) \ge \mu_s(x) = \alpha_1$$

and so $\mu_s(z) = \alpha_1$. Hence $z \in S$, which shows that $x \circ y \subseteq S$. Therefore S is a hyperK-subalgebra of H by Lemma 2.3. Conversely, suppose that S is a hyperK-subalgebra of H and let $x, y \in H$. If $x \notin S$ or $y \notin S$, then clearly

$$\inf_{w \in x \circ y} \mu_s(w) \ge \alpha_2 = \mu_s(x).$$

Assume that $x \in S$ and $y \in S$. Then $x \circ y \subseteq S$, and μ thus

$$\inf_{z \in x \circ y} \mu_s(z) = \alpha_1 = \mu_s(x).$$

Consequently, μ_s is a strong fuzzy hyperK-subalgebra of H. \square

Definition 3.8 ([3]). Let H_1 and H_2 be hyperK-algebras. A mapping $f: H_1 \rightarrow H_2$ is called a *weak homomorphism if*

- (i) f(0) = 0,
- (ii) $f(x \circ y) \subseteq f(x) \circ f(y)$ for all $x, y \in H_1$

Theorem 3.9. Let $f: H_1 \to H_2$ be a weak homomorphism of hyperK-algebras. If μ is a fuzzy hyperK-subalgebra of H_2 , then μ_f is a strong fuzzy hyperK-subalgebra of H_1 where μ_f is defined by $\mu_f(x) := \mu(f(x))$, for all $x \in H_1$.

Proof. For any $x, y \in H_1$, we have

$$\inf_{z \in x \circ y} \mu_f(z) = \inf_{z \in x \circ y} \mu(f(z))$$

$$\geq \inf_{f(z) \in f(x \circ y)} \mu(f(z))$$

$$\geq \inf_{f(z) \in f(x) \circ f(y)} \mu(f(z))$$

$$\geq \mu(f(x))$$

$$= \mu_f(x),$$

which shows that μ_f is a strong fuzzy hyperK-subalgebra of H_1 . \square

Let $t \ge 0$ be a real number. If $\alpha \in [0, 1]$, α^t shall mean the positive root in case t < 1. We define $\mu^t : H \to [0, 1]$ by $\mu^t(x) := (\mu(x))^t$ for all $x \in H$.

Theorem 3.10. If μ is a strong fuzzy hyperK-subalgebra of H, then so is μ^t for all $t \ge 0$.

Proof. For any $x, y \in H$ and $t \ge 0$, we have

$$\inf_{z \in x \circ y} \mu^{t}(z) = \inf_{z \in x \circ y} (\mu(z))^{t}$$

$$= (\inf_{z \in x \circ y} \mu(z))^{t}$$

$$\geq (\mu(x))^{t}$$

$$= \mu^{t}(x)$$

Hence μ^t is a strong fuzzy hyperK-subalgebra of $H.\Box$

Theorem 3.11. Let μ be a strong fuzzy hyperK-subalgebra of H and $\theta \colon [0, \mu(0)] \to [0, 1]$ be an increasing function. Let μ_{θ} be a fuzzy set in H defined by $\mu_{\theta}(x) := \theta(\mu(x))$ for all $x \in H$. Then μ_{θ} is a strong fuzzy hyperK-subalgebra of H.

Proof. Let $x, y \in H$. Then

$$\inf_{z \in x \circ y} \mu_{\theta}(z) = \inf_{z \in x \circ y} \theta(\mu(z))$$

$$\geq \theta \left(\inf_{z \in x \circ y} \mu(z) \right)$$

$$\geq \theta(\mu(x))$$

$$= \mu_{\theta}(x)$$

Hence μ_{θ} is a strong fuzzy hyperK-subalgebra of $H.\square$

References

- [1] R. A. Borzoei, A. Hasankhani, M. M. Zahedi and Y. B. Jun, *On hyperK-algebras*, Math. Japon. 52(1) (2000), 119–121.
- [2] Y. B. Jun, A note of fuzzy ideals in BCK-algebras, Math. Japon. 42(2) (1995), 333–335.
- [3] Y. B. Jun, *On fuzzy hyperK-subalgebras of hyperK-algebras*, Scientiae Mathematicae 3(1) (2000), 67-76.
- [4] Y. B. Jun, X. L. Xin, E. H. Roh and M. M. Zahedi, Strong HyperBCK-ideals of hyperBCK-algebras, Math. Japon. 51 (2000), 493-498.
- [5] Y. B. Jun and X. L. Xin, *On fuzzy hyperBCK-ideals of hyper BCK-algebras*, Fuzzy

- Sets and Systems (submitted).
- [6] Y. B. Jun, M. M. Zahedi, X. L. Xin and R. A. Borzoei, *On hyper BCK-algebras*, Italian J. Pure Appl. Math. 8 (2000), 127–136.
- [7] Y. B. Jun, X. L. Xin, M. M. Zahedi and R. A. Borzoei, On a hyperBCK-algebra that satisfies the hypercondition, Mathematica Japonica 52(1) (2000), 95–101.
- [8] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934), 45–49.
- [9] J. Neggers and H. S. Kim, A Fundamental Theorem of B-homomorphism for B-algebras, Czech. Math. J. (submitted).
- [10] L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965), 338-353.
- [11] M. M. Zahedi and A. Hasankhani, F-polygroups(I), J. Fuzzy Math. 3 (1996), 533-548.

저 자 소 개

김영희

제 13권 2호(2003년 4월호) 참조

정태은

제 13권 2호(2003년 4월호) 참조

오경아(K.A Oh)

1977년 : 충북대학교 수학과 졸업 1999년 : 동대학원 수학과 졸업(석사) 2002년 ~ 현재 : 동대학원 수학과 박사과정