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Abstract

We investigate
fuzzy (supra) interior operators. We study
(supra)topologies and fuzzy (supra)interior operators.

the properties of fuzzy (semi-)topogenous orders in the framework of fuzzy (supra) topologies and
the relationship between fuzzy (semi-)topogenous structures, fuzzy
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1. Introduction and Preliminaries

Csaszar [3] introduced the «concept of a
syntopogenous structure to develop to the three main
structures of topologies, proximities and uniformities.

Katsaras and Petalas [11] extended them to the
theory of fuzzy sets. Katsaras [4-11] has developed in
many directions. El-Monsef and Ramadan [1] defined
and studied the concept of fuzzy supra topological

spaces.
In this paper, we investigate the properties of fuzzy
(semi-) topogenous orders, fuzzy (supra)topological

spaces and fuzzy (supra) interior operators. We study
the relationship between them.

Thought this paper, let X be a nonempty set,
I=[0,1] and I* the family of all fuzzy subsets of X.
For ecl, alx)=a for all xeX. For a subset A of X,
x a is a characteristic function of A.

Definition 1.1([1,2]) A subset r of X is called a
fuzzy supra topology on X if it satisfies the following
conditions:

(0D 0, leg,

(02) z_\e/r,u €t for any pEer.

A fuzzy supra topology t is called a fuzzy topology if
it satisfies

(03) uApgsr for any pi,pr=r.

The pair (X,7) is called a fuzzy
topological space.

(resp. supra)

Definition 1.2([1,2]) A function int:/*—I%is called a
fuzzy supra interior operator on X if it satisfies the
following conditions:

I int(D=T1.

(I12) int(A)=<A.

(I3) If A;<A4,, then int(A)<int(A,).

Mo Xt 2 20024 88 14
tR AKX} 1 20034 48 18Y

A fuzzy supra interior operator int is called a fuzzy
interior operator if it satisfies
M int(A A4 =int(A DAInt(A ).
A fuzzy supra interior operator int is called topological
if it satisfies
(T) int(int(1))=int(A).
Theorem 1.3([1,2]) Let (X, 1) be a fuzzy (resp. supra)
topological space. We define a function int ;7% as
follows:

int {)=V{uel*| p<i,per}

Then int, is a topological fuzzy (resp. supra) interior
operator on X.

2. Fuzzy (semi-)topogenous orders and
fuzzy (supra) topologies

Let < be a binary relation on Xiie €CI*¥xI* . The
facts that (A,p)e<and (4, )< are denoted by ALy

and A <y, respectively.

Definition 2.1 ([11])
called a fuzzy
satisfies:

(T1) 1«1 and 0<0,

(T2) if ALy, then A<g,

(T3) if A<A;€p,<p, then A<Lp.

A binary relation € on [*is
semi-topogenous order on X if it

Remark 2.2 Let < be a fuzzy semi-topogenous order
on X. Define by

AM<ECp iff (T—-w<(1-A).
Then <<°is a fuzzy semi-topogenous order on X.
Definition 2.3 ([11]) A fuzzy
< is called:
(1) symmetric if < =<<°, that is,
(TA) e iff (1-w<(1-23)

(2) fuzzy topogenous if for any
2,11,/12,#,#1,11251)('

semi-topogenous order
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(TH) A VA Lp iff A, €p, A .<0
(T6) Ay Apy iff ALpy, ALy,
(3) perfect if, for any {u,A;| ielcr®,

(T7) i\e/rxi Ly iff ALy, for all el
(4) biperfect if it is

A,u,) ien)cr®,

(T8 A< z/E\F;z, iff ALy, for all ierl.

perfect and for any

Definition 24 ([11]) Let <, and <<{; be
semi-topogenous orders on X. <<; is finer than

fuzzy
Ky (
{y is coarser than <<;) if A g for all A<ye.

Definition 2.5 ([11]) A fuzzy topogenous order < on

X is called a fuzzy topogenous structure satisfying the

following condition:

(T) € -< is finer than € where < - < is defined by,

for any A, pel® A(<-<p iff

such that A<p and p<p.

The pair (X, <) is called a fuzzy topogenous space.
A fuzzy topogenous structure < is called perfect

(resp. biperfect, symmetric, etc.) if < is perfect (resp.

biperfect, symmetric, etc.).

there exists pel”

Theorem 2.6 Let <€ be a fuzzy semi-topogenous order
on X. A mapping int («I*—I% is defined by

Then we have the following properties:
(1) int ( is a fuzzy supra interior operator.

(2) If < satisfies (T6), then

operator.
(3) If <« satisfies (TH), then int .. is a fuzzy interior

int « 1s a fuzzy interior

operator.

(4) ¥ <-< is finer than &, then, for each Aerl”,
int ((int (((A)) = int (A).

(5) If < is a fuzzy topogenous structure, then int ( is a
topological fuzzy interior operator.

Proof (1) (I1) Since 1< 1, int ((1)=1.

(I2) Let uLA. By (T2, pu<A. It implies
int ((A) <A.
(I3 If A,<4, and LA, by (T3), p<i, Thus,

int ((A)<int ((4,)
(2) From (I3), we have
int (A Adg)<int (A )AInt (A 3)
Conversely, suppose there exist A;,4,e7¥such that
int (A Adg)=int (A )it ((Ag)
There exist x€X and t<I, such that

int <<(A AY, 2)(9C)< t{ int (((/1 1)(x)/\int (((/1 2)(.96)
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Since int (A ;)(x)>¢, for each

pel™ with ¢ <A, such that

i={1,2}, there exists

int ((A N> p {2)>¢

On the other hand, since
1A, 1Ay = A )<A,;, ie{1,2) ((T3))
=(pAu )L 1AL, (T6))
int (A AADD = (g Ap )0 ¢,
It is a contradiction. Thus,
it (A1 A= int (A JAINt (A 5)
(3) It is similarly proved as (2).
(4) Since int ((A)=<A by (T3),

we have

int (((int «(A)) < int «(A)

Suppose there exists Ael*such that
int ((int «(4)) 2 int ((A)

There exist x€X and t=I, such that
int «(int (D))< < int (((AD)(x).
Since int () (x)> ¢, there exists pel* with g<4 such
that int () ()= x(x)> ¢
Since € - < is finer than <, then p<A
implies (< » €)A .Then there exists pel* such that
<o and p<A. Hence u<po<int (((A)
implies p<int «(A). Thus

int ((int ((AD))(x) Zp(x)> ¢t
It is a contradiction. Thus,

int (((int «(A))= int ().
(5) 1t is trivial from (2) and (4).

Theorem 2.7 Let € be a fuzzy semi-topogenous order
on X. Define a fuzzy topology on X by

T= {AEIX | int (((/i) :/1}
Then:
(1) 7« is a fuzzy supra topology on X induced by <.
(2) If < satisfies (T6), then 7 is a fuzzy topology on

X.
(3) If < is perfect, then Aer iff A<4, for each A=I*.

Proof (1)(01) Since int «(0)=10 and int(1)=1,

then 0, ler.

(02) Let A;=ry, for each jeTI. Then

A;=int (4;). By Theorem 2.6 (1), we have
int ((( ]\E/I"/l ])2 /\E/rint <<(/1 ]) = /\E/FA je

So, int «( ]_\E/F/l D= >\E/Fﬂ . Hence J_\E/F/l ST

Thus, ¢ is a fuzzy supra topology on X.



(2) Let Al,/lzef«. Then
A=int ((1)),i=1,2.

From Theorem 2.6 (2), we have

int (A 1AAd9)=int (A DAInt (1) =24, A1,.Consequentl
v, AN ST

(3) Let p=r( . Then

p=int () =V{peI* | p<pu}.

Since < is perfect, p<p.
Conversely, let A€A. Then int ((A)=2,

So, int «{(A)=A.Thus, Aer.

Example 2.8 We define binary relations
as follows

<<1,<<2 on ]X

Ay iff A<y,
Aop if A=0 or pz=0.

We easily show that (X, <) are fuzzy biperfect and
symmetric topogenous spaces for i=1,2.
From Theorem 2.6, we can obtain fuzzy
operators int ¢ ;1 X1% as follows:

int  (A)=4,

1,if A= 1,
int <<2(/1) ={ _
0, otherwis.

From Theorem 2.7, ¢, =I*and r(,={0, 1}.

interior

Theorem 29 lLet int be a fuzzy supra interior operator
on X. Define a binary relation < i as

AL e 2 iff AL int(p).

Then :

(1) K is @ perfect fuzzy semi-topogenous order on
X such that int «_(A) = int(A)for each A=l*.

(2) If int is a fuzzy interior operator on X, then <{ is
a fuzzy topogenous order on X.

(3) If int(int(A)) =int(A) for each AeF, then
(i » <ime) 1s finer than <oy

(4) If int be a topological fuzzy interior operator on X,
then < 1s a fuzzy topogenous structure on X.

(®) If « is a fuzzy semi-topogenous order, then <{ ..
is finer than <.

6) If < is a perfect fuzzy semi-topogenous order, then
<= int -

Proof (1) (T1) Since int(0)=0 and int(1)= 1, then
0 0, 1< 1.

(T2) Uf Ay, then A<int(p)<pu

(T3) Let A<A ;Kipp <p. Since A,;<int(y,) ,
A1<int(x). Hence A< 1.

then

Fuzzy semi-topogenous orders and fuzzy supra topologies

(T7) Let _\E/P/l K #t Since A,< _\E/r/i RCENYTIN

by (T3), A, Kmu for al ierl.
Let A, yp for all eI Then A, <int(p)
iel’ Thus, VA <int(g).

el

for all

It implies i\e/rzi &Kme Thus, «x is a perfect fuzzy
semi-topogenous order on X.

Let p#ywA. Then p<int(A). By the definition of int (.,
we have int « (4) <int(A)

Since int(A) <int(A), then int(A)<{y A

Thus, int (A =int(A).

(2) From (1), we only show <{;, satisfies (T6).

Let Alim (1 A\9). Since Al (i Apo)<pu; for
i=1,2, then , by (T3), Al mu; .

Let Al iu; for 7=1,2. Then A<int(y)).

Since int is a fuzzy interior operator,

A<int(ge DAInt(u o) = int (2 1/A\z2)

Thus, A< (#21/A\19).

(3) Let Aip. Then A<int(g). Since
A<int(g)=int(int(x)) and int()<int(z)

then A<y int(g) and int(@)<<{y g Thus,

Al * K

(4) 1t is trivial from (2) and (3).

(5) Let A<p. Then A<int ((z).

Thus A i ¢ Thus, iy, is finer than <.
(6) Let A< g 2. Then

A<int (W =V{p | p<u}.
Since < is perfect, then int ((x) <y

From (T3), A<int ((p)<p implies A<z

Theorem 2.10 Let ¢ be a fuzzy supra topology on X.
Then:

(1) ALy p Iff there exists p=r such that A<p<g
(2) T, =T.
Proof (1) Let A<y p.

Then A< int .(g¢)<p By Definition 1.1 (O2),
we have
Let per such that A<p<p.

Then A<int (p)=p<p.

Hence Al i .0<pu. By (T3), AL iy p.

(2) Since << iy, is perfect semi-topogenous
order on X, by Theorem 2.7(3),

At = ALK A

int ,(per.

Then there exists per such that
ALp<A. So Aer.

Conversely, let Aez. Then

Allie A, Thus, Aer

A=int (A). 1t implies

Example 2.11 Let X={x,y, 2} be a set.
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Define binary relations <{; on I* as follows:
A=0 or ;A'—‘_l,
A qp iff ] DFASz g 1#F42X 4y

V#A<x () 1F42x 4y

A=0or =1,
ALK M iff _0=FASX(_V) T#:ﬂZX(x,y)
5*ASZ {» —I:":#Zl' {32}

A="0 or p=1,
AL g iff

VFEASx () 1Fu22 0y

(1) «; is a fuzzy
not topogenous because

semi-topogenous order on X. but

201Xy, XXy but (XwVire) iX ey

From Theorem 2.6, we can obtain fuzzy supra interior
operator int «;:I*—I* as follows:

T if A=1,

int ,1((](/1) = X (x,y) if x (x,y)S/{#:—l

0 otherwise
From Theorem 2.7, we can obtain fuzzy supra topology
7«, as follows:

T, = {_0,—1, x (x.y)}-
Since x ()€ T BUut Xty <X s
by Theorem 2.7 (3), <<, is not perfect
From Theorem 2.9(5), (i is finer than <(,,
but <K # LK i, as follows:
A=0 or p=1,
ALK int«,l‘ iff _ _
0FA<x () 1FpZX 5

(2) (s is a perfect fuzzy semi-topogenous order on X
but not topogenous because:
2 neX i XX pa
but  x , <X N\ (5,4
From Theorem 2.6, we can obtain fuzzy supra interior
operator int ;1 1% as follows:

T1if A=1,
. X if XpSAEl
int 3¢, () = ) _

X i Xxpa<A#F ]

0 otherwise

But it is not a fuzzy interior operator because
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0=int «,(¥ () /\X ts.2))

Fint (X ()N (X 1,2) = X 1)
From Theorem 2.9(6), since <{; is perfect, we have
K= iy, as follows:

A=T0 or p=1,
Al o iff | 0FA<y(y 1F4=14,,
_0#=A$x(y) —1#—‘/1295(},_2)
Furthermore,

r«,={0, 1} iff A< 4, forallie {0, 1).

(3) s is a fuzzy topogenous order on X but
not topogenous structure from the following statements:
For any pel® with y»<p<x., ,we have

2 K30, oKX s

Thus, x@ (g K2 ey but xHh<K 3Xi(ryt. From
Theorem 2.6(2), int , is a fuzzy
interior operator from:

1if A=T1,
int 4 (=] x( if x@Ey<A=1

0 otherwise

From Theorem 2.6(3), since <{; ° <3 is not finer than
{3, in general, we have

X = int (@ )Fint . (int « (X 0) = 0.

(4) We easily show that << ,<(, and <{; are not
symumetric.

(5) We define a fuzzy interior operator
int: I*—I% as follows:

Tif A=1,
it ={ x if Xup<i*1
0 otherwise

From Theorems 2.6 and 2.9, we obtain the followings:

A=10 or =1,

AL e e i L _
04 0 1Fp2x (o
1 if A=1,

int « Im(/i)"_— X {x} if x(x,y)SA:’:_l
0 otherwise

We have int ¢ (3) = int(A) for all Aerl*.
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