DOI QR코드

DOI QR Code

Direction control using signals originating from facial muscle constructions

안면근에 의해 발생되는 신호를 이용한 방향 제어

  • 양은주 (대전대학교 대학원 전자공학과) ;
  • 김응수 (대전대학교 대학원 전자공학과)
  • Published : 2003.08.01

Abstract

EEG is an electrical signal, which occurs during information processing in the brain. These EEG signals have been used clinically, but nowadays we ate mainly studying Brain-Computer Interface (BCI) such as interfacing with a computer through the EEG, controlling the machine through the EEG. The ultimate purpose of BCI study is specifying the EEG at various mental states so as to control the computer and machine. This research makes the controlling system of directions with the artifact that are generated from the subject s will, for the purpose of controlling the machine correctly and reliably We made the system like this. First, we select the particular artifact among the EEG mixed with artifact, then, recognize and classify the signals pattern, then, change the signals to general signals that can be used by the controlling system of directions.

사람의 뇌 속에 있는 신경 세포들은 여러 정보 처리 활동을 하면서 전기적인 신호를 발생시키는데 이를 두피 표면에서 측정한 것이 뇌파이다. 이러한 뇌파는 임상에서 주로 이용되어 왔으나 근래에는 이러한 뇌파를 이용하여 컴퓨터와 통신하거나 기기를 제어할 수 있는 이른바 BCI(Brain-Computer Interface)에 대한 연구가 대두되고 있다. BCI 연구의 궁극적 목표는 다양한 정신상태에 따른 뇌파의 특성을 파악하여 컴퓨터나 기기 등을 제어하는 것이다. 이를 위하여 본 연구에서는 좀 더 정확하고 신뢰성 있는 기기 제어를 위해 피험자의 의지대로 발생시킨 잡파를 이용하여 방향 제어 시스템을 구현하였다. 뇌파에 포함된 잡파 중 구별될 수 있는 특징을 나타내는 잡파를 선택하고 이들의 패턴을 인식하고 분류한 후 이를 제어신호로 변환하여 방향을 제어하는 시스템을 구현하였다.

Keywords

References

  1. C. Guger, H. Ramoser, and G. Pfurtscheller, "Real-Time EEG Analysis with Subject-Specific Spatial Patterns for a Brain-Computer Interface (BCI) IEEE Transactions on Rehabilitation Engineering, Vol.8, No4, Dec. 2000.
  2. G. Pfurtscheller and Christa Neuper "Motor Imagery and Direct Brain-Computer Communication" Proceeding of the IEEE, Vol. 89, No.7, July 2001.
  3. J. R. Wolpaw, D.J.McFarland, and T.M. Vaughan "Brain-Computer Interface Research at the Wadsworth Center", IEEE Transactions on Rehabilitation Engineering, Vol.8, No.2, June 2000.
  4. T. Felzer and B. Freisleben, "HaWCoS : The "hands-free" wheelchair control system", In ASSETS 2002 - Proceeding ACM SIGGAPH Conference on Associative Technologies, Edinburgh, Scotland, ACM Press, 2002.
  5. T.Felzer and B. Freisleben, "BRAINLINK : A software tool up porting the development of and EEG-based brain-computer interface", submitted for publication, 2001.
  6. T. Felzer and B. Frisleben, "An input device for human-computer interface based on muscle control", submitted for publication, 2001.
  7. C. W. Anderson, S.V. devulapalli, and E.A Stolz, "Determining mental state from EEG signals using neural networks", Scientific Programming-Special Issue on Applications Analysis, Vol. 4, No. 3. pp. 171-183, 1995.
  8. C. W. Anderson and Z. Sijercic, "Classification of EEG signals from four subjects during five mental tasks", in solving Engineering Problems with neural networks: Proceedings of the Conference on Engineering Applications (EANN'96), A.B.Bulsari, S.Kallio, and D. Tsaptsions, Eds., Turku, Finland, Systems Engineering Association. pp. 407-414, 1996.
  9. J. J. Tecce, J. Gips, C. P. Olivieri, L. J. Pok, and M. R. Consiglio, "Eye movement control of computer functions", International Journal of Psychophysiology, Vol. 29, pp. 319-325, 1998. https://doi.org/10.1016/S0167-8760(98)00020-8
  10. K. S. Park and K. T. Lee, "Eye-controlled human/computer interface using the line-of-sight and the intentional blink", Computers & Industrial Engineering, Vol. 30, No. 3, pp. 463-473, 1996. https://doi.org/10.1016/0360-8352(96)00018-6
  11. H. Jasper, "The ten twenty electrode system of the international federation", Electroencephalographic Clinical Neurophysiology, Vol. 10, pp. 371-375, 1998.
  12. Schlogl A, Neuper C. Pfurtscheller G. : "Estimating the mutual information of an EEG-based Brain-Computer-Interface", Biomedizinische Technik Vol. 47(1-2): pp. 3-8, 2002. https://doi.org/10.1515/bmte.2002.47.1-2.3
  13. Obermaier, B., Guger, C., Neuper, C., Pfurtscheller G. : "Hidden Markov Models for Online Classification of Single Trial EEG Data. ", Pattern Recog. Ltrs. Vol. 22, pp. 1299-1309, 2001. https://doi.org/10.1016/S0167-8655(01)00075-7
  14. Pfurtscheller G, Woertz M, Krausz G, Neuper C. : "Distinction of different fingers by the frequency of stimulus induced beta oscillations in the human EEG", Neurosci Lett. Vol. 307, pp. 49-52, 2001. https://doi.org/10.1016/S0304-3940(01)01924-3
  15. Riedmiller. M, and H. Braun. "A direct adaptive method for faster backpropagation learning : The RPROP algorithm", Proceedings of the IEEE International Conference on Neural Networks, 1993.
  16. 양은주, 신동선, 김응수, "EEG 잡파 특성 분석", 한국퍼지 및 지능 시스템 학회 논문지, 제12권, 제4호, pp. 366-372, 2002. https://doi.org/10.5391/JKIIS.2002.12.4.366
  17. 윤중수, "뇌파학 개론", 고려의학, 1999.
  18. 이창섭 외 "뇌파학 입문", 하나의학사, 1997.