DOI QR코드

DOI QR Code

GaMnN 박막의 중성자 조사 및 열처리 효과

Effects of Neutron Irradiation and Heat Treatment for GaMnN

  • 이계진 (충남대학교 재료공학과) ;
  • 강희수 (충남대학교 재료공학과) ;
  • 김정애 (충남대학교 재료공학과) ;
  • 우부성 (충남대학교 재료공학과) ;
  • 김경현 (충남대학교 재료공학과) ;
  • 김도진 (충남대학교 재료공학과) ;
  • 김봉구 (원자력연구원 하나로이용기술개발부) ;
  • 강영환 (원자력연구원 하나로이용기술개발부) ;
  • 유승호 (화학연구원) ;
  • 김창균 (화학연구원) ;
  • 김창수 (표준연구원 재료물성평가센터) ;
  • 김효진 (충남대학교 재료공학과) ;
  • 임영언 (충남대학교 재료공학과)
  • 발행 : 2003.07.01

초록

The room-temperature operating semiconductor GaMnN is known to be improved in its magnetic property when a highly conductive precipitate $Mn_3$GaN exists. Therefore, it is useful to investigate the behavior of the precipitate through heat treatments for further improvement of its magnetic property. Furthermore, neutron irradiation may further influence the behavior of the precipitates, and consequently, their effects on the magnetization. With the heat treatment, $Mn_3$GaN decomposed and a new phase of $Mn_3$Ga has generated. The kinetics was accelerated by neutron irradiation, which might generate defects that can help the decomposition of N and/or the formation of $Mn_3$Ga. The increase and decrease of the magnetization of the heat-treated GaMnN thin films were explained consistently by the behavior of the precipitates.

키워드

참고문헌

  1. Y. Ohno, D.K.Young, B. Beschoten, F. Matsukura, H. Ohno and D.D.Awschalom, Nature, 402, 790 (1999) https://doi.org/10.1038/45509
  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science, 287, 1019 (2000) https://doi.org/10.1126/science.287.5455.1019
  3. M. Zajac, R. Doradzinski, J. Gosk, J. Szczytko, M. Lefeld-Sosnowska, M. Kaminska, A. Twardowski, M. Palczewska, E. Grzanka and W. Gebicki, Appl. Phys. Lett., 78, 1276 (2001) https://doi.org/10.1063/1.1348302
  4. N. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S.N.G. Chu and R.G. Wilson, Appl. Phys. Lett., 78, 3475 (2001) https://doi.org/10.1063/1.1376659
  5. M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Rituma, M. J. Reed, C. A. Parker, J. C. Roberts and S. M. Bedair, Appl. Phys. Lett., 79, 3473 (2001) https://doi.org/10.1063/1.1419231
  6. M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulou, K. T. McCarthy and A. F. Hebard, Appl. Phys. Lett., 79, 3473 (2001) https://doi.org/10.1063/1.1397763
  7. Y. L. Soo, G. Kioseoglou, S. Kim, S. Huang, Y. H. Kao, S. Kuwabara, S. Owa, T. Kondo and H. Munekata, Appl. Phys. Lett., 79, 3926 (2001) https://doi.org/10.1063/1.1423406
  8. G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Kim and F. Ren, Appl. Phys. Lett., 80, 3964 (2002) https://doi.org/10.1063/1.1481533
  9. S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoton and H. Hori, J. Cryst. Growth, 237-239, 1358 (2002) https://doi.org/10.1016/S0022-0248(01)02183-2
  10. K. H. Kim, K. J. Lee, D. J. Kim, H. J. Kim, Y. E. Ihm, D. Djayaprawira, M. Takahashi, C. S. Kim, C. G. Kim and S. H. Yoo, Appl. Phys. Lett., 82, 1775 (2003) https://doi.org/10.1063/1.1561580
  11. K. H. Kim, J. H. Park, B. D. Kim, C. S. Kim, D. J. Kim, H. J. Kim and Y. E. Ihm, Metals Mater., 8, 177 (2002) https://doi.org/10.1007/BF03027015
  12. J. P. Bouchaud, Ann. Chim., 3, 81 (1968)
  13. J. M. Baik, H. W. Jang, J. K. Kim and J. L. Lee, Appl. Phys. Lett., 82, 583 (2003) https://doi.org/10.1063/1.1541111