DOI QR코드

DOI QR Code

Microstructural Changes during Activation Process of Isotopic Carbon Fibers using CO2 Gas(II)-TEM Study

이산화탄소를 이용한 등방성 탄소섬유의 활성화과정 중 발생하는 구조변화(II)-TEM을 이용한 분석

  • Roh, J.S. (School of Advanced Materials and Systems Engineering, Kumoh National University of Technology)
  • 노재승 (금오공과대학교 신소재공학부)
  • Published : 2003.11.01

Abstract

A development of micropores of $CO_2$activated isotropic carbon fibers from TEM was observed. It was observed that the micropores of activated carbon fibers(ACFs) were consisted of slit-shaped pores(SP) and cylinder-shaped pores(CP). The SPs were formed between two parallel-carbon layers, and the CPs were formed at a place which is connected polygonally by more than two carbon layers. It was shown that the CPs of the ACFs were developed at high degree of burn-offs and at high activation temperature. The pore size distribution of the best ACF, which was observed at a highest value of specific surface area(3,495 $\m^2$/g), showed a continuous distribution in the range of about $4∼l5\AA$, and the median pore size was 6.7$\AA$. The super-high specific surface area of ACFs was found to be due to that the SPs were connected with a maximum size of 7∼8$\AA$ continuously, It is possible that the SPs should be formed in the ACFs in order to show super-high SSA.

Keywords

References

  1. S. J. Gregg and K. S. W. Sing, 'Adsorption, Surface Area and Porosity', Academic Press, London (1982)
  2. P. J. M. Carrot and K. S. W. Sing, 'Characterization of Porous Solid', 77, Ed. by K. K. Unger, J. Rouquerol, K. S. W. Sing and H. Kral, Elsevier Sci. Publ., Amsterdam (1988)
  3. M. C. Mittelmeijer-Hazeleger and J. M. Martin-Martinez, Carbon, 30, 695 (1992) https://doi.org/10.1016/0008-6223(92)90188-3
  4. H. Marsh, Carbon, 25, 49 (1987) https://doi.org/10.1016/0008-6223(87)90039-X
  5. K. Kaneko, C. Ishii, M. Ruike and H. Kuwabara, Carbon, 30, 1075 (1992) https://doi.org/10.1016/0008-6223(92)90139-N
  6. J. R. Fryer, Carbon, 19, 431 (1981) https://doi.org/10.1016/0008-6223(81)90026-9
  7. H. Marsh, D. Crawford, T. M. O'Grady and A. Wennerberg, Carbon, 20, 419 (1982) https://doi.org/10.1016/0008-6223(82)90042-2
  8. M. Huttepain, A. Oberlin, Carbon, 28, 103 (1990) https://doi.org/10.1016/0008-6223(90)90100-D
  9. S. Lu, C. Blanco and B. Rand, Carbon, 38, 3 (2000)
  10. A. Sharma, T. Kyotani and A. Tomita, Carbon, 38, 1977 (2000) https://doi.org/10.1016/S0008-6223(00)00045-2
  11. A. K. Kercher and D. C. Nagle, Carbon, 41, 15 (2003) https://doi.org/10.1016/S0008-6223(02)00261-0
  12. N. Yoshzawa, K. Maruyama, Y. Yamada and M. Zielinska-Blajet, Fuel, 79, 1461 (2000) https://doi.org/10.1016/S0016-2361(00)00011-9
  13. K. Oshida, M. Endo, T. Nakajima, S. L. di Vittorio, M. S. Dresselhaus and G. Dresselhaus, J. Mater. Res. 8, 512 (1993) https://doi.org/10.1557/JMR.1993.0512
  14. K. Oshida, K. Kogiso, K. Matsubayashi, K. Takeuchi, S. Kobayashi, M. Endo, M. S. Dresselhaus and G. Dresselhaus, J. Mater. Res., 10, 2507 (1995) https://doi.org/10.1557/JMR.1995.2507
  15. M. G. Dobb, H. Guo, D. J. Johnson and C. R. Park, Carbon, 33, 1553 (1995) https://doi.org/10.1016/0008-6223(95)00114-S
  16. H. S. Shim and R. Hurt, Carbon 97, July 18-23, 438 (1997)
  17. N. Yoshizawa, Y. Yamada and M, Shiraishi, Journal of Materials science, 33, 199 (1998) https://doi.org/10.1023/A:1004322402779
  18. M. Endo, T. Furuta, F. Minoura and C. Kim, Supramolecular Science, 5, 261 (1998) https://doi.org/10.1016/S0968-5677(98)00017-0
  19. D. Y. Kim, Y. Nishiyama, M. Wada and S. Kuga, Carbon, 39, 1051 (2001) https://doi.org/10.1016/S0008-6223(00)00221-9
  20. K. Oshida, T. Nakazawa, T. Miyazaki and M. Endo, Synthetic Metals, 125, 223 (2002) https://doi.org/10.1016/S0379-6779(01)00535-5
  21. A. Sharma, T. Kyotani and A. Tomita, Fuel, 78, 1203 (1999). https://doi.org/10.1016/S0016-2361(99)00046-0
  22. J. S. Roh and D. S. Suhr, Korean J. Materials Research, 8, 114 (1998)
  23. J. S. Roh and D. S. Suhr, Korean J. Materials Research, 8, 120 (1998)
  24. J. S. Roh, Korean J. Materials Research, in press (2003)
  25. A. W. P. Fung, A. M. Rao, K. Kuriyama, M. S. Dresselhaus, G. Dresselhaus, M. Endo and N. Shindo, J. Mater. Res., 8, 489 (1993) https://doi.org/10.1557/JMR.1993.0489

Cited by

  1. Microstructural changes of polyacrylonitrile-based carbon fibers (T300 and T700) due to isothermal oxidation (1): focusing on morphological changes using scanning electron microscopy vol.18, 2016, https://doi.org/10.5714/CL.2016.18.018