DOI QR코드

DOI QR Code

기상증착공정에 의한 산화아연 나노로드의 성장

Growth of ZnO Nanorod Using VS Method

  • 김나리 (고려대학교 재료공학과) ;
  • 김재수 (한국과학기술연구원 금속공정연구센터) ;
  • 변동진 (고려대학교 재료공학과) ;
  • 노대호 (고려대학교 재료공학과) ;
  • 양재웅 (대진대학교 신소재공학과)
  • Kim, Na-Ri (Korea University, Department of Materials Science and Engineering) ;
  • Kim, Jae-Soo (Korea Institute of Science and Technology, Metal Processing Research Center) ;
  • Byun, Dong-Jin (Korea University, Department of Materials Science and Engineering) ;
  • Rho, Dae-Ho (Korea University, Department of Materials Science and Engineering) ;
  • Yang, Jae-Woong (Daejin Univerity, Department of Advanced Materials Science and Engineering)
  • 발행 : 2003.10.01

초록

The ZnO nanorods were synthesized using vapor-solid (VS) method on sodalime glass substrate without the presence of metal catalyst. ZnO nanorods were prepared thermal evaporation of Zn powder at $500^{\circ}C$. As-fabricated ZnO nanorods had an average diameter and length of 85 nm and 1.7 $\mu\textrm{m}$. Transmission electron microscopy revealed that the ZnO nanorods were single crystalline with the growth direction perpendicular to the (101) lattice plane. The influences of reaction time on the formation of the ZnO nanorods were investigated. The photoluminescence measurements showed that the ZnO nanorods had a strong ultraviolet emission at around 380 nm and a green emission at around 500 nm.

키워드

참고문헌

  1. S, Ijima, Nature., 354, 56 (1991) https://doi.org/10.1038/354056a0
  2. D. H. Rho, J. S. Kim, D. J. Byun, J. W. Wang, N. R. Kim, Kor. J. Mater. Res., 13, 404 (2003) https://doi.org/10.3740/MRSK.2003.13.6.404
  3. X. C. Wu, W. H. Song, W. D. Hung, M. H. Du, B. Zhou, Y. D. Sun, J. J. Da, Mater. Res. Bull., 36, 847 (2001) https://doi.org/10.1016/S0025-5408(01)00530-X
  4. I. J. Li, X. L. Chen, H. J. Li, Y. D. Xu, J. Cryst. Gr., 236, 71 (2002) https://doi.org/10.1016/S0022-0248(01)02162-5
  5. I. Cui, G. W. Meng, W. D. Huang, G. I. Wang, L. D. Zhang, Mater. Res. Bull, 35, 1653 (2000) https://doi.org/10.1016/S0025-5408(00)00369-X
  6. C. C. Tang, S. S. Fan, M. L. Chapelle, P. Li, Chem. Phys. Lett., 333, 12 (2001) https://doi.org/10.1016/S0009-2614(00)01326-9
  7. S. Y. Li, C. Y. Lee, T. Y. Tseng, J. Cryst. Gr., 247, 357 (2003) https://doi.org/10.1016/S0022-0248(02)01918-8
  8. Y. Wu, R. Fan, P. Yang Nano Letters., 2, 83 (2002) https://doi.org/10.1021/nl0156888
  9. M. Huang, Y. Wu, F. N. Tran, E. Weber, D. Yang, Adv. Mater., 13(2), 113 (2001) https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  10. M. S. Gudiksen, J. wang, C. M. Liber, J. Phys. Chem. B., 105, 4062 (2001) https://doi.org/10.1021/jp010540y
  11. L. D. Zhang, Solid State Commun., 115, 253 (2000) https://doi.org/10.1016/S0038-1098(00)00169-1
  12. I. A. Shriki, Electrochem. Soc., 133, 666 (1986) https://doi.org/10.1149/1.2108651
  13. Y. Dai, Y. Zhang, Y. Q. Bai, Z. L. Wang, Chem. Phys. Lett., 375, 96 (2003) https://doi.org/10.1016/S0009-2614(03)00823-6
  14. J. S. Lee, K. S. Park, M. I. Kang, I. W. Park, S. W. Kim, W.K. Cho, H. S. Han, S.S. Kim, J. Cryst. Gr., 254, 423 (2003) https://doi.org/10.1016/S0022-0248(03)01197-7
  15. H. S. Kim, W. Sigmund, Appl. Phys. Lett., 81(11), 2085 (2002) https://doi.org/10.1063/1.1504877
  16. J. Zhang, W. Yu, I. Zhang, Phys. Lett., A 299, 276 (2002)
  17. Z. W. Pan, Z. R. Dai, Z. L. Wang, Science., 291, 1947 (2001) https://doi.org/10.1126/science.1058120
  18. H. Yumoto, R. R. Hasiguti, T. Watanabe, N. Igota, J. Cryst. Gr., 87, 1 (1988) https://doi.org/10.1016/0022-0248(88)90337-5
  19. Y Dai, Y. Zhang, Y Q. Bai, Z. L. Wang, Chem Phys. Lett., 375, 96 (2003) https://doi.org/10.1016/S0009-2614(03)00823-6
  20. X. Chen, C. An, J. Lin, X. Wang, Y. Qian, J. Cryst, Gr., 253, 357 (2003) https://doi.org/10.1016/S0022-0248(03)01088-1
  21. Y. W Wang, L. D. Zhang, G. Z.Wang, X. S. Peng, Z.Q. Chu, C. H. Liang, J. Cryst. Gr., 234, 171 (2002) https://doi.org/10.1016/S0022-0248(01)01661-X
  22. V. A. L. Roy, A. B. Djurisic, W K. Chan, J. Gao, H. F. Lui, C. Surya, Appl. Phys. Lett., 83(1), 141 (2003) https://doi.org/10.1063/1.1589184
  23. Y Dai, Y. Zang, Z. L. Wang, Solidstate Comm., 126, 629 (2003) https://doi.org/10.1016/S0038-1098(03)00277-1
  24. K. Vahnheusden, W. L. Warren, C. H. Seager, D. K. Tallant, J. A. Voigt, B. E. Gnade, J. Appl. Phys., 79(10), 7983 (1996) https://doi.org/10.1063/1.362349
  25. B. Lin, Z. Fu, Y Jia, Appl. Phys. Lett., 79(7), 943 (2001) https://doi.org/10.1063/1.1394173
  26. S. A. Studenikin, M. Cocuvera, J. Appl. Phys., 91(8), 5060 (2002) https://doi.org/10.1063/1.1461890
  27. D. C. Reynolds, D. C. Look, B. Jogai, J. Appl. Phys., 89(11), 6189 (2001) https://doi.org/10.1063/1.1356432
  28. B. D. Yao, Y F Chan, N. Wang, Appl. Phys. Lett., 81(4), 757 (2002) https://doi.org/10.1063/1.1495878
  29. B. Y. Geng, G. Z. wang, Z. Jiang, T. Xie, S. H. Sun, G. W. Meng, L. D. Zhang, Appl. Phys. Lett., 82(26), 4791 (2003) https://doi.org/10.1063/1.1588735