Analysis of Facilitated Olefin Transport Through Polymer Electrolyte Membranes Containing Silver Salts

은염을 포함하는 고분자 전해질 막을 통한 올레핀 촉진수송의 해석

  • Yong Soo Kang (Center for Facilitated Transport Membranes, KIST) ;
  • Dongkyun Ko (Center for Facilitated Transport Membranes, KIST, Department of Chemical Engineering, Inha University) ;
  • Jong Hak Kim (Center for Facilitated Transport Membranes, KIST) ;
  • Sung Taik Chung (Department of Chemical Engineering, Inha University)
  • Published : 2003.12.01

Abstract

The origin of large difference of selectivity of $C_3H_6$ over $C_3H_8$ between pure gas and mixed gas through silver polymer electrolyte membranes is investigated. Firstly, the effect of feed condition on the permeance of mixture gas ($C_3H_6/C_3H^8$) and the separation performance is examined. Upon decrease of the $C_3\;H_6$ concentration, the $C_3H_6$ permeance decreased whereas the permeance of $C_3H_8$ increased, resulting in the decrease of the selectivity of $C_3H_6/C_3H_8/.$ This result is ascribed to the $C_3H_6$-induced plasticization of membranes. Experimental results were validated by means of mathematical modeling, where pressure independent permeabilities were used.

본 연구에서는 은-고분자 전해질 막에서의 프로필렌/프로판에 대한 순수 기체 선택도 (${\approx}10,000$)와 혼합기체 선택도(${\approx}40$)의 큰 차이의 원인을 규명하였다. 먼저 기체 공급 조건이 혼합기체의 투과도와 분리 성능에 미치는 영향을 고찰하였다. 프로필렌의 농도가 감소함에 따라 고분자 전해질 막을 통한 프로필렌의 투과도는 감소하고, 프로판의 투과도는 증가를 하였으며, 그 결과 프로판/프로필렌의 선택도가 감소하였다. 이는 고분자 전해질막의 프로필렌에 의한 가소화에 의한 것임을 실험적 결과 및 수학적 모델에 의해서 확인하였다. 또한, 압력과 무관한 투과도를 사용하였을 때의 이론적 계산에 의한 막 분리 성능은 실험치와 비슷하게 나왔음을 알 수 있었다.

Keywords

References

  1. Ind. Eng. Chem. Res. v.32 Olefin/paraffin separation technology: A Review R.B.Eldridge
  2. Adv. Mater. v.12 Polymr-salt complexes containing silver ions and their application to facilitated olefin transport membranes S.U.Hong;J.Won;Y.S.Kang
  3. Macromolecules 34,6052 Role of trnasient cross-links for transport properties in silver-polymer electrolytes J.H.Kim;B.R.Min;C.K.Kim;J.Won;Y.S.Kang
  4. J. Phys. Chem. B. v.106 Spectroscopic interpretation of silver ion complexation with propylens in silver polymer electrolytes J.H.Kim;B.R.Min;C.K.Kim;J.Won;Y.S.Kang
  5. Chem. Eur. J. v.8 Complexation Mechanism of Olefin with Silver Ions Dissolved in Polymer Matrix and its Effect on Facilitated Olefin Transport J.H.Kim;B.R.Min;J.Won;Y.S.Kang
  6. Macromolecules v.35 New Insights into the Coordination Mode of Silver Ions Dissolved in poly(2-ethyl-2-oxazoline) and its relation to facilitated olefin transport J.H.Kim;B.R.Min;C.K.Kim;J.Won;Y.S.Kang
  7. Macromolecules v.36 Role of PolymerMatrix in Polymer/Silver complexes for Structure, Interactions and Facilitated Olefin Transport J.H.Kim;B.R.Min;J.Won;S.H.Joo;S.Kim;Y.S.Kang
  8. J. Poly. Sci. B. Poly. Phys. v.40 Ionic interaction behavior and facilitated olefin transport in PVP-AgCFSO3 lectrolytes; Effect of molecular weight J.H.Kim;B.R.Min;C.K.Kim;J.Won;Y.S.Kang
  9. Chem. Commun. Coordination Structure of Various Ligands in Crosslinked PVA to Silver lons for Facilitated Olefin Transport J.H.Kim;B.R.Min;K.B.Lee;J.Won;Y.S.Kang
  10. J. Membr. Sci. v.212 Facilitated transport of ethylene across polymer membranes containing silver salt: effect of HBF₄on the photoreduction of silver ions J.H.Kim;B.R.Min;H.S.Kim;J.Won;Y.S.Kang
  11. Macromolecules v.36 Revelation of Facilitated Olefin Transport through Silver-Polymer Complex Membranes using Anion Complexation J.H.Kim;B.R.Min;J.Won;Y.S.Kang
  12. U. S. Patent 5,670,051 Olefin separation membrane and process I.Pinnau;L.G.Toy;c.Casillas
  13. J. Membr. Sci. v.182 Propane and propylene sorption n solid polymer electrolytes bsed on poly(ethylene oxide) and silver salts S.Sunderrajan;B.D.Freeman;C.K.Hall;I.Pinnau
  14. J. Membr. Sci. v.184 Solid polymer electrolyte composite membranes for olefin/parafin separation I. Pinnau;L.G.Toy
  15. Chem. Commun. Olefin/parafin solubility in a solid polymer electrolyte membrane T.C.Merkel;Z.He;A.Morisato;I.Pinnau
  16. J. Appl. Phys. v.21 Separation of gases by fractional permeation through membranes S.Weller;W.A.Steiner
  17. Chem. Eng. Prog. v.46 Engineering aspects of separation of gases S.Weller;W.A.Steiner
  18. AIChE J. v.29 Gas separation by permeators with high flux asymmetric membranes C.Y.Pan
  19. J. Memb. Sci. v.118 Corrections for analytical gas-permeation models for separation of binary gas mixtures using membrane modules S.W.Smith;C.K.Hall;B.D.Freeman;R.Rautenbach
  20. J. Memb. Sci. v.142 Simulation of binary gas separation in hollow fiber asymmetric membranes by orthogonal collocation S.P.Kaldis;G.C.Kapantaidakis;T.I.Papadopoulos;G.P.Sakellaropoulos
  21. Comp. & Chem. Eng. v.25 Detailed mathematical modeling of membrane modules J.I.Marriott;E.Sorensen;I.D.L.Bogle
  22. Chem. Mater. v.14 Effect of plasticizers on the formation of silver nanoparticles in polymer delectrolyte membranes for olefin/parafin sepatation B.Jose;J.H.Ryu;Y.J.Kim;H.Kim;Y.S.Kang;S.D.Lee;H.S.Kim