DOI QR코드

DOI QR Code

퉁퉁마디로부터 염에 의하여 유도되는 Aldolase 유전자의 분리 및 발현분석

Molecular Cloning and Characterization of Salt-inducible Aldolase from Salicornia herbacea

  • Cha, Joon-Yung (PMBBRC, Gyeongsang National University) ;
  • Netty Ermawati (Department of Molecular Biology, Gyeongsang National University, PMBBRC, Gyeongsang National University) ;
  • Kim, Soon-Gil (Department of Agricultural Biology, Gyeongsang National University) ;
  • Lee, Jeung-Joo (Department of Agricultural Biology, Gyeongsang National University) ;
  • Lim, Chae-Oh (Department of Molecular Biology, Gyeongsang National University, PMBBRC, Gyeongsang National University) ;
  • Chung, Woo-Sik (Department of Molecular Biology, Gyeongsang National University, PMBBRC, Gyeongsang National University) ;
  • Lee, Kon-Ho (Department of Molecular Biology, Gyeongsang National University, PMBBRC, Gyeongsang National University) ;
  • Son, Dae-Young (Department of Molecular Biology, Gyeongsang National University, PMBBRC, Gyeongsang National University)
  • 발행 : 2003.12.01

초록

토양 내의 고농도의 염은 심각한 환경스트레스 중의 하나로 농작물의 생산을 감소시킨다. 식물은 염 스트레스로부터 벗어나기 위하여 많은 단백질을 합성한다든지 유전자들의 발현을 조절하는 등 여러 가지 생리, 생화학적인 변화를 일으킨다. 퉁퉁마디는 우리나라에 자생하는 염생식물로 갯벌과 염전주위에서 생육한다. 퉁퉁마디의 생화학적, 분자생물학적 내염성 기구를 이해하기 위하여 differential display방법으로 NaCl에 의하여 발현이 증가되는 cDNA들을 분리하였다. 본 연구에서는 그 중 하나인 ShADL의 특성을 조사하였다. ShADL은fructose-1, 6-bisphosphate aldolase와 높은 유사성을 보였다. 이 유전자는 1293bp길이에 359개의 아미노산으로 구성된 open reading frame을 포함하고 있으며, 이로부터 추정되는 분자량은 39 kDa이었다. ShADL단백질은 애기장대의 aldolase와 86%의 높은 유사성을 나타내었으며 같은 염생식물인 com-mon ice plant의 adolase와는 78%의 유사성을 보였다. Northern 분석결과, ShADL 유전자는 NaCl의 농도가 증가함에 따라 발현량이 급격히 증가하는 것으로 나타났다.

Soil salinity is one of the most serious abiotic stresses limiting the productivity of agricultural crops. To cope with salt stress, plants respond with physiological, developmental and biochemical changes, including the synthesis of a number of proteins and the induction of gene expression. Salicornia herbacea is a halophytic plant that grows in salt marshes and on muddy seashores. In order to understand the biochemical and molecular mechanisms of salt tolerance in S. herbacea, we isolated several genes that involved in the salt tolerance by mRNA differential display. Here we report the cloning of a cDNA encoding fructose-1, 6-bisphosphate aldolase, named ShADL, which is 1293 bp long and contains an open reading frame consisted of 359 amino acids with calculated molecular mass of 39 kDa. ShADL protein showed 86% identity with Arabidopsis and 78% with aldolase of common ice plant. Northern blot analysis revealed that the transcript of ShADL gene was increased dramatically depending on the NaCl concentrations.

키워드

참고문헌

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Andrews DL, MacAlpine DM, Johnson JR, Kelley PM, Cobb BG, Drew MC (1994) Differential induction of mRNAs for the glycolytic and ethanolic fermentative pathways by hypoxia and anoxia inmaize seedlings. Plant Physiol 106: 1575-82 https://doi.org/10.1104/pp.106.4.1575
  3. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York
  4. Binzel ML, Hess FD,Bressan RA, Hassegawa PM (1988) Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol 86: 607-614 https://doi.org/10.1104/pp.86.2.607
  5. Bohnert HJ, thomas JC, DeRocher EJ, Michalowski CB, Breiteneder H, Vernon DM, Deng W, Yamada S, Jensen RG (1994) Responses to salt stress in the halophyte Mesembryanthemum crystallinum. In: Cherry JH (ed), Biochemical and cellular mechanisms of stress tolerance in plant. Springer-Verlag, Berlin, pp415-428
  6. Boyer JS (1982) Plant productivity and environment. Science 218: 443-448 https://doi.org/10.1126/science.218.4571.443
  7. Church GM, Gilbert W (1984) Genomicsequencing. Proc Natl Acad Sci USA 81: 1991-5 https://doi.org/10.1073/pnas.81.7.1991
  8. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215-223 https://doi.org/10.1046/j.1365-313X.1993.04020215.x
  9. Garbarino J, DuPont FM (1989) Rapid induction of $Na^+/H^+$ exchange activity in barley root tonoplast. Plant Physiol 89: 1-4 https://doi.org/10.1104/pp.89.1.1
  10. Gross W, Bayer MG, Schnarrenberger C, Gebhart UB, Maier TL, Schenk H (1994) Two distinct aldolases of class II type in the cyanoplasts and in the cytosolof the alga Cyanophora paradoxa. Plant Physiol 105: 1393-1398 https://doi.org/10.1104/pp.105.4.1393
  11. Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon MO, Gage DA (1994) Osmoprotective compounds in the Plumba-ginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci USA 91: 306-310 https://doi.org/10.1073/pnas.91.1.306
  12. Kagaya Y, Nakamura H, Hidaka S, Ejiri S, Tsutsumi K (1995) The promoter from the rice nuclear gene encoding chloroplast aldolase confers mesophyll-specific and light-regulated expression in transgenic tobacco. Mol Gen Genet 248: 668-74 https://doi.org/10.1007/BF02191706
  13. Kelly PM, Tolan DR (1986) The complete amino acid sequence for the anaerobically induced aldolase from maize derived from cDNA clones. Plant Physiol 82: 1076-1080 https://doi.org/10.1104/pp.82.4.1076
  14. Lebherz HG, Leadbetter MM, Bradshaw RA (1984) Isolation and characterization of the cytosolic and chloroplast forms of spinach leaf fructose diphosphate aldolase. J Bioi Chem 259: 1011-1017
  15. Marsh JJ, Lebherz HG (1992) Fructose-bisphosphate aldolases: an evolutionary history. Trends Biochem Sci 17: 110-113 https://doi.org/10.1016/0968-0004(92)90247-7
  16. Mujer CV, Rumpho ME, Lin JJ, Kennedy RA (1993) Constitutive and inducible aerobic and anaerobic stress proteins in the Echinochloa Complex and rice. Plant Physiol 101: 217-226 https://doi.org/10.1104/pp.101.1.217
  17. Pelzer-Reith B, Penger A, Schnarrenberger C (1993) Plant aldolase: cDNA and deduced amino-acid sequences of the chloroplast and cytosol enzyme from spinach. Plant Mol Bioi 21: 331-40 https://doi.org/10.1007/BF00019948
  18. Reviron MP, Vartanian N, Sallantin M, Huet JC, Pemollet JC, Vienne D (1992) Characterization of a novel protein induced by pro-gressive or rapid drought and salinity in Brassica napus leaves. Plant Physilol 100: 1486-1493 https://doi.org/10.1104/pp.100.3.1486
  19. Russell DA, Lee DM, Wong, Sachs MM (1990) The anaerobic responses of soybean. Plant Physiol 92: 401-407 https://doi.org/10.1104/pp.92.2.401
  20. Rutter WJ (1964) Evolution ofaldolase. Fed Proc 23: 1248-1257
  21. Sambrook J, Russell DW (2000) Molecular cloning: A laboratory mannual, Ed 3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  22. Schnarrenberger C, Gross W, Pelzer-Reith B, Wiegand S, Jacobshagen S (1992) The evolution of isozymes of sugar phosphate metabolism in algae. In: Stabenau H (ed) Phylogenetic changesin peroxisomes of algae. Phylogeny of Plant Peroxissomes. University of Oldenburg, Oldenburg pp 310-329
  23. Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation ofthe waxy locusin maize. Cell 35: 225-33 https://doi.org/10.1016/0092-8674(83)90225-8
  24. Umeda M, Uchimiya H (1994) Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants (Oryza sativa L.) under submergence stress. Plant Physiol 106: 1015-1022 https://doi.org/10.1104/pp.106.3.1015
  25. Wyn Jones RG (1981) In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworths, London, pp271-292