DOI QR코드

DOI QR Code

미생물 생촉매를 이용한 Trichloroethylene 연속처리용 생물반응기 시스템 평가

Evaluation of Biocatalyst and Bioreactor System for the Continuous Treatment of Trichloroethylene


초록

생촉매 및 생물막 반응기를 이용한 TCE 생분해는 TCE를 무해한 최종산물로 처리할 수 있는 환경친화적 방법이며, 초기 시설비와 운영비도 낮아 경제성도 우수한 기술로 평가할 수 있다. 그러나, TCE 및 독성 분해산물로 인하여 생촉매 불활성화가 일어나서 장기간 안정된 반응기 운전이 어렵고, TCE와 성장기질사이의 경쟁적 저해로 인하여 처리효율이 저하된다는 단점이 있다. 이러한 문제점을 극복하기 위하여 TCE 처리 단계와 생촉매 재활성화 단계를 구분시킨 2단계 CSTR/TBF 시스템에 대하여 TCE 연속처리용 시스템으로써의 실규모 적용 가능성을 평가해 보았다. B. cepacia 및 M. trichosporium을 생촉매로 사용한 2단계 CSTR/TBF 시스템은 고농도 유입 TCE와 다양한 운전조건에서도 28∼525mg TCE/1$.$day수준의 높은 TCE 처리효율을 안정되게 유지할 수 있어 산업폐가스 처리를 위한 실규모 처리 시스템으로 적용 가능성이 높다고 평가할 수 있었다.

Microbial trichloroethylene (TCE) degradation using trickling biofilter (TBF) is a cost-effective treatment method, in which monooxygenase (MO) fortuitously transforms TCE via cometabolism. Simple TBF, however, could not be stably operated for long-term treatment of TCE due to the contradictory characteristics of cometabolism. In this paper, microbial biocatalyst and biofilm reactor system, a two-stage continuous stirred tank reactor (CSTR)/TBF system using Burkholderia cepacia G4 and Methylosinus trichosporium OB3b, are evaluated for the long-term continuous treatment of TCE. The maximum TCE elimination capacities were in the range of 28 and 525 mg TCE/1$.$day. The reactor systems were stably operated for more than 3∼12 months.

키워드

참고문헌

  1. Kor. J. Biotechnol. Bioeng. v.14 Gas-phase TCE degradation in a two-stage CSTR/TBR system using Methylosinus trichosporium OB3b Choi,Y.B.;E.Y.Lee;S.Park
  2. Reviews of Environmental Contamination and Toxicology v.101 Trichloroethylene: water contamination and health risk assessment Fan,A.M.;G.W.Ware(Eds)
  3. Biotechnol. Lett. v.23 Cometabolic biodegradation of trichloroethylene by Methylosinus trichosporium is stimulated by low concentrations of methane or methanol Kang,J.;E.Y.Lee;S.Park https://doi.org/10.1023/A:1012758803576
  4. Kor. J. Biotechnol. Bioeng. v.16 Bioreactor systems for the cometabolic biodegradation of trichloroethylene Lee,E.Y.
  5. Kor. J. Biotechnol. Bioeng. v.16 Development of two-stage CSTR/TBF sytem for the cometabolic degradation of gas-phase TCE by Burkholderia cepacia G4 Lee,E.Y.;S.Park
  6. J. Biosci. Bioeng. v.96 Continuous treatment of gas-phase trichloroethylene by Burkholderia cepacia G4 in a two-stage continuous stirred tank reactor/trickling biofilter system Lee,E.Y.
  7. Biotechnol. Lett. v.25 Development and operation of a trickling biofilter system for continuous treatment of gas-phase trichloroethylene Lee,E.Y.;B.D.Ye;S.Park https://doi.org/10.1023/A:1026087928877
  8. Biotechnol. Bioprocess Eng. v.8 Evaluation of transformation capacity for degradation of ethylene chlorides by Methylosinus trichosporium OB3b Lee,E.Y.;J.Kang;S.Park
  9. Wat. Sci. Tech. v.38 The comparison of trichloroethylene removal rates by methane- and aromatic-utilizing microorganisms Lu,C.J.;C.M.Lee;M.S.Chung
  10. Biotechnol. Bioeng. v.63 Trichloroethylene degradation in a two-step system by Methylosinus trichosporium OB3b. Optimization of system performance: use of formate and methane Sipkema,E.M.;W. de Koning;J.E. van Hylckama Vlieg;K.J.Ganzeveld;D.B.Janssen;A.A.Beenackers https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<56::AID-BIT6>3.0.CO;2-F
  11. Appl. Microbiol. Biotechnol. v.45 Evaluation of trichloroethylene degradation and mineralization by pseudomonads and Methylosinus trichosporium OB3b Sun,A.K.;T.K.Wood https://doi.org/10.1007/s002530050679
  12. J. Am. Water Works Assoc. v.5 The groundwater supply survey Westrick,J.J.;J.W.Mello;R.F.Thomas
  13. Kor. J. Biotechnol. Bioeng. v.15 Effect of growth substrates on cometabolic biodegradation of trichloroethylene by Burkholderia cepaica Ye,B.D.;S.J.Yoon;S.Park;E.Y.Lee
  14. Kor. J. Biotechnol. Bioeng. v.15 Optimization of cometabolic trichloroethylene degradation conditions by response surface analysis Yoon,S.J.;B.D.Ye;S.Park;E.Y.Lee