DOI QR코드

DOI QR Code

Restoration of Saccharomyces cerevisiae coq7 Mutant by a Neurospora crassa Gene

Neurospora crassa 유전자에 의한 Saccharomyces cerevisiae coq7 돌연변이의 회복

  • 김은정 (고신대학교 생명과학과) ;
  • 김상래 (고신대학교 생명과학과) ;
  • 이병욱 (고신대학교 생명과학과)
  • Published : 2003.12.01

Abstract

CoenzymeQ is a quinone derivative with a long isoprenoid side chain. It transports electrons in the respiratory chain located in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. It also functions as an antioxidant. Saccharomyces cerevisine coq mutants, that are deficient coenzyme Q biosynthesis fail to aerobically grow. They are not able to grow on non-fermentable carbon sources, such as glycerol, either The putative $coq^{-7}$ gene involved in coenzyme Q biosynthesis of Neurospora crassa was cloned and used for complementation of S. cerevisiae coq7 mutant. The predicted amino acid sequence of N. crassa COQ7 showed about 58% homology with Coq7p of S. cerevisiae. The growth rate of S. cerevisiae $coq^7$ mutant transformed with the N. crassa $coq^{-7}$ gene was restored to the wild-type level. The complemented 5. cerevisiae strain was able to grow with glycerol as a sole carbon source and showed less sensitivities to linolenic acid, a polyunsaturated fatty acid.

Coenzyme Q은 긴 isoprenoid 사슬을 갖는 quinone의 유도체이다. Coenzyme Q는 진핵생명체의 미토콘드리아의 내막과 원핵생명체의 세포막에 위치하는 전자전달계에 존재하는 지용성 물질이며, 또한 항산화제로의 기능도 갖는다. Coenzyme Q는 Saccharomyces cerevisiae의 호기적 성장에 필수적이며, coq 돌연변이체는 발효가 불가능한 탄소 원에서의 성장이 불가능하다. S. cerevisiae의 $coq^7$p 효소들과 유사성을 나타내는 단백질을 암호화하는 Neurcspora crassa cDNA를 효모의 발현 벡터에 삽입하였다. N. crassa COQ7의 예상 서열은 S. cerevisiae의 효소와 58% homology를 보였다. N. crassa $coq^{-7}$ 유전자의 S. cerevisiae $coq^7$ 형질전환체는 야생형 균주와 유사한 성장률을 보였다. 형질전환 균주들은 발효가 불가능한 탄소원인 글리세롤을 유일한 탄소원으로 배양하였을 경우에도 정상적인 성장을 나타냈다. 또한 불포화지방산인 linolenic acid를 성장 배지에 첨가하여도 야생형 균주와 유사한 생존율이 관찰되었다.

Keywords

References

  1. FEBS Lett. v.543 Complementation of Escherichia coli ubiF mutation by Caenorhabditis elegans CLK-1, a product of the longevity gene of the nematode worm Adachi,A.;N.Shinjyo;D.Fujita;H.Miyoshi;H.Amino;Y.Watanabe;K.Kita https://doi.org/10.1016/S0014-5793(03)00419-8
  2. FASEB J. v.17 Silencing of ubiquinone biosynthesis genes extends life span in Caenorhabditis elegans Asencio,C.;J.C.Rodriguez-Aguilera;M.Ruiz-Ferrer;J.Vela;P.Navas
  3. Plant J. v.14 Cloning and functional expression of AtCOQ3, the Arabidopsis homologue of the yeast COQ3 gene, encoding a methyltransferase from plant mitochondria involved in ubiquinone biosynthesis Avelange-Macherel,M.H.;J.Joyard https://doi.org/10.1046/j.1365-313X.1998.00109.x
  4. Biochim. Biophys. Acta. v.25 Isolation of a quinone from beef heart mitochondria Crane,F.L.;Y.Hatefi;R.L.Lester;C.Widmer https://doi.org/10.1016/0006-3002(57)90457-2
  5. Free Radic. Biol. Med. v.29 Regulation of ubiquinone metabolism Dallner,G.;P.J.Sindelar https://doi.org/10.1016/S0891-5849(00)00307-5
  6. Proc. Natl. Acad. Sci. USA v.93 Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids Do,T.Q.;J.R.Schultz;C.F.Clarke https://doi.org/10.1073/pnas.93.15.7534
  7. Clin. Investig. v.71 no.Sup.8 Ubiquinol: an endogenous antioxidant in aerobic organisms Ernster,L.;P.Forsmark-Andree
  8. Science v.275 Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1 Ewbank,J.J.;T.M.Barnes;B.Lakowski;M.Lussier;H.Bussey;S.Hekimi https://doi.org/10.1126/science.275.5302.980
  9. Chem. Res. Toxicol. v.12 Oxidation of ochratoxin A by an Fe-porphyrin system: model for enzymatic activation and DNA cleavage Gillman,I.G.;T.N.Clarke;R.A.Manderville https://doi.org/10.1021/tx9901074
  10. Biochemistry v.35 Complementation of coq3 mutant yeast by mitochondrial targeting of the Escherichia coli UbiG polypeptide: evidence that UbiG catalyzes both O-methylation steps in ubiquinone biosynthesis Hsu,A.Y.;W.W.Poon;J.A.Shepherd;D.C.Myles;C.F.Clarke https://doi.org/10.1021/bi9602932
  11. J. Biol. Chem. v.277 Development and fertility in Caenorhabditis elegans clk-1 mutants depend upon transport of dietary coenzyme Q8 to mitochondria Jonassen,T.;B.N.Marbois;K.F.Faull;C.F.Clarke;P.L.Larsen https://doi.org/10.1074/jbc.M204758200
  12. J. Biol. Chem. v.273 Yeast Clk-1 homologue (Coq7/Cat5) is a mitochondrial protein in coenzyme Q synthesis Jonassen,T.;M.Proft;F.Randez-Gil;J.R.Schultz;B.N.Marbois;K.D.Entian;C.F.Clarke https://doi.org/10.1074/jbc.273.6.3351
  13. J. Biol. Chem. v.276 Dimer formation of octaprenyl-diphosphate synthase (IspB) is essential for chain length determination of ubiquinone Kainou,T.;K.Okada;K.Suzuki;T.Nakagawa;H.Matsuda;M.Kawamukai https://doi.org/10.1074/jbc.M007472200
  14. Science v.295 Extension of lifespan in Caenorhabditis elegans by a diet lacking coenzyme Q Larsen,P.L.;C.F.Clarke https://doi.org/10.1126/science.1064653
  15. J. Biol. Chem. v.276 Ubiquinone is necessary for mouse embryonic development but is not essential for mitochondrial respiration Levavasseur,F.;H.Miyadera;J.Sirois;M.L.Tremblay;K.Kita;E.Shoubridge;S.Hekimi https://doi.org/10.1074/jbc.M108980200
  16. Molecular Cloning: A Laboratory Manual Maniatis,T.;E.F.Fritsch;J.Sambrook
  17. J. Biol. Chem. v.271 The COQ7 gene encodes a protein in Saccharomyces cerevisiae necessary for ubiquinone biosynthesis Marbois,B.N.;C.F.Clarke https://doi.org/10.1074/jbc.271.6.2995
  18. Biochim. Biophys. Acta v.1127 Antioxidant role of cellular reduced coenzyme Q homologs and alpha-tocopherol in free radical-induced injury of hepatocytes isolated from rats fed diets with different vitamin E contents Matsura,T.;K.Yamada;T.Kawasaki https://doi.org/10.1016/0005-2760(92)90232-K
  19. Biochim. Biophys. Acta. v.1214 Reinvestigation of lipid peroxidation of linolenic acid Mlakar,A.;G.Spiteller https://doi.org/10.1016/0005-2760(94)90046-9
  20. Cold Spring Harb Symp Quant Biol. v.51 Pt1 Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction Mullis,K.;F.Faloona;S.Scharf;R.Saiki;G.Horn;H.Erlich https://doi.org/10.1101/SQB.1986.051.01.032
  21. Neurospora Sequencing Project(assembly version 3)
  22. J. Bacteriol. v.179 Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodobacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cervisiae Okada,K.;Y.Kamiya;X.Zhu;K.Sizuki;K.Tanaka;T.Nakagawa;H.Matsuda;M.Kawamukai
  23. EMBO J. v.14 CAT5, a new gene necessary for dere pression of gluconeogenic enzymes in Saccharomyces cerevisiae Proft,M.;P.Kotter;D.Hedges;N.Bojunga;K.D.Entian
  24. J. Biol. Chem. v.277 Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants Santos-Ocana,C.;T.Q.Do;S.Padilla;P.Navas;C.F.Clarke https://doi.org/10.1074/jbc.M112222200
  25. Ann. Rev. Genet. v.24 Premeiotic instability of repeated sequences in Neurospora crassa Selker,E.U. https://doi.org/10.1146/annurev.ge.24.120190.003051
  26. J. Biol. Chem. v.276 A new member of the family of di-iron carboxylate proteins. Coq7 (clk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis Stenmark,P.;J.Grunler;J.Mattsson;P.J.Sindelar;P.Nordlunda;D.A.Berthold https://doi.org/10.1074/jbc.C100346200
  27. J. Biochem. v.121 Analysis of the decaprenyl diphosphate synthase (dps) gene in fission yeast suggests a role of ubiquinone as an antioxidant Suzuki,K.;K.Okada;Y.Kamiya;X.F.Zhu;T.Nakagawa;M.Kawamukai;H.Matsuda https://doi.org/10.1093/oxfordjournals.jbchem.a021614
  28. Microbiol. Rev. v.54 PET genes of Saccharomyces cerevisiae Tzagoloff,A.;C.L.Dieckmann
  29. J. Bacteriol. v.114 Pathway for ubiquinone biosynthesis in Escherichia coli K-12: gene-enzyme relationships and intermediates Young,I.G.;P.Stroobant;C.G.Macdonald;F.Gibson