Self-Diffusion of Hydrophobically End-Capped Polyethylene Oxide Urethane Resin by Using Pulsed-Gradient Spin Echo NMR Spetroscopy

  • Published : 2003.12.01

Abstract

Hydrophobically End-capped polyethylene oxide Urethane Resin(HEUR)-associating polymers, HEUR 35(8), HEUR 35(12), and HEUR 35(18), comprise a polyethylene oxide (PEO) having a molecular weight of 35,000 that is end capped with two C$\_$8/H$\_$17/, C$\_$12/H$\_$25/, and C$\_$18/H$\_$37/ alkyl chains, respectively. These associating polymers were synthesized by condensation reactions with polyethylene oxides and alkyl isocyanates. The self-diffusion coefficients of HEUR-associating polymers were measured in aqueous solution by pulsed-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) spectroscopy. All polymers underwent a decrease in their mean diffusion coefficients as the concentration was increased. However, the dispersion of the diffusion coefficients, ${\beta}$, about the mean fluctuated with changes in concentration. The large dispersion at low concentrations of HEUR 35(8) and HEUR 35(12) is related to the interaction between hydrophobic end groups, and the large dispersion at high concentrations of HEUR 35(18) is correlated with transient network formation. These results are valuable for predicting the associating mechanism of the large aggregates before and after their critical micelle concentration.

Keywords

References

  1. Macromolecules v.28 B.Rao;Y.Umera;L.Dyke;P.M.Mcdonald https://doi.org/10.1021/ma00106a018
  2. Macromolecules v.28 A.N.Semenov;J.F.Joanny;A.R.Khokhlov https://doi.org/10.1021/ma00108a038
  3. J. Colloid Interf. Sci. v.193 E.Alami;S.A.Abrahmsen;M.Vasilescu;M.Almgren https://doi.org/10.1006/jcis.1997.5043
  4. Langmuir v.10 D.J.Lundberg;R.G.Brown;J.E.Glass;R.R.Eley
  5. Macromol. Res. v.10 M.J.Park;K.Char;H.D.Kim;C.H.Lee;B.S.Seong;Y.S.Han https://doi.org/10.1007/BF03218326
  6. Collid Surface A v.112 B.Xu;A.Yekta;L.Li;Z.Masoumi;M.A.Winnik https://doi.org/10.1016/0927-7757(96)03558-3
  7. Langmuir v.9 A.Yekta;J.Duhamel;H.Adiwidjaja;P.Brochard;M.A.Winnik https://doi.org/10.1021/la00028a001
  8. Curr. Opin. Colloid Interface Sci. v.2 M.A.Winnik;A.Yekta https://doi.org/10.1016/S1359-0294(97)80088-X
  9. Collid Surface A v.112 J.Francois;S.Maitre;M.Rawiso;D.Sarazin;G.Beinert;F.Isel https://doi.org/10.1016/0927-7757(96)03514-5
  10. Macromolecules v.29 E.Alami;M.Almgren;W.Brown https://doi.org/10.1021/ma951174h
  11. Macromolecules v.31 K.C.Tam;R.D.Jenkins;M.A.Winnik;D.R.Bassett https://doi.org/10.1021/ma980148r
  12. J.Phys. Chem. v.97 H.Walderhaug;F.K.Hasen;S.Abrahmsen;K.Persson;P.Stilbs
  13. Macromolecules v.31 O.Vorobyova;A.Yekta;M.A.Winnik;W.Lau https://doi.org/10.1021/ma980819l
  14. Langmuir v.17 O.Vorobyova;W.Lau;M.A.Winnik https://doi.org/10.1021/la0011026
  15. Polymer v.33 C.Maechling-Strasser;F.Clouet;J.Francois https://doi.org/10.1016/0032-3861(92)90018-R
  16. Prog. Polym. Sci. v.15 Y.Morishima https://doi.org/10.1016/0079-6700(90)90026-W
  17. J. Coat. Tech. v.69 R.D.Hester;D. R. Squir Jr. https://doi.org/10.1007/BF02696097
  18. Macromolecules v.25 A.R.C.Baljon;T.A.Witten https://doi.org/10.1021/ma00037a028
  19. Langmuir v.9 A.P.Mast;R.K.Prudhomme;J.E.Glass https://doi.org/10.1021/la00027a017
  20. Macromolecules v.29 R.May;P.Kaczmarski;J.E.Glass
  21. Langmuir v.13 G.Xu;L.Li;A.Yekta;Z.Masoumi;S.Kanagalingam;M.A.Winnik;K.Zhang;P.M.Macdonald https://doi.org/10.1021/la960799l
  22. Macromolecules v.26 J.P.Kaczmarski;J.E.Glass https://doi.org/10.1021/ma00071a026
  23. Macromolecules v.34 J.F.Meins;J.F.Tassin https://doi.org/10.1021/ma001324a
  24. Prog. Org. Coat. v.35 A.J.Reuvers https://doi.org/10.1016/S0300-9440(99)00014-4
  25. J. Phys. Chem. v.100 K.Zhang;B.Xu;M.A.Winnik;P.M.Macdonald https://doi.org/10.1021/jp953558f
  26. Macromolecules v.29 E.Feitosa;W.Brown;P.Hansson https://doi.org/10.1021/ma950516g
  27. Macromolecules v.28 R.Johannsson;C.Chassenieux;D.Durand;T.Nicolai;P.Vanhoorne;R.Jerome https://doi.org/10.1021/ma00129a006
  28. Macromolecules v.29 E.Alami;M.Almgren;W.Brown https://doi.org/10.1021/ma9518161
  29. Macromolecules v.33 S.Saito;S.Koizumi;K.Matsuzaka;S.Suehiro;T.Hashimito https://doi.org/10.1021/ma9910336
  30. J. Colloid Interf. Sci. v.230 C.Gourier;E.Beaudoin;M.Duval;D.Sarazin;S.Maitre;J.Francois https://doi.org/10.1006/jcis.2000.7033
  31. Macromolecules v.26 A.Yekta;J.Duhamel;P.Brochard;H.Adiwidjaja;M.A.Winnik https://doi.org/10.1021/ma00060a006
  32. Macromolecules v.25 J.Duhamel;A.Yekta;Y.Z.Hu;M.A.Winnik https://doi.org/10.1021/ma00051a046
  33. J. Coat Tech. v.63 B.Richey;A.B.Kirk;E.K.Eisenhart;S.Fitzwater;J.Hook
  34. Macromolecules v.29 Y.Uemura;P.M.Macdonald https://doi.org/10.1021/ma950993z
  35. Macromolecules v.32 Q.T.Pham;W.B.Russel;J.C.Thibeault;W.Lau https://doi.org/10.1021/ma982007v
  36. J. Chem. Phys. v.42 E.O.Stejskal;J.E.Tannner https://doi.org/10.1063/1.1695690
  37. Adv. Polym. Sci. v.52 E. D. von Meerwall
  38. J. Non-Cryst Solids v.131 E. D. von Meerwall https://doi.org/10.1016/0022-3093(91)90676-W
  39. Annu. Rep. NMR Spectrosc. v.27 T.Nose https://doi.org/10.1016/S0066-4103(08)60268-9
  40. Coll. Polym. Sci. v.270 K.Persson;S.Abrahmsen;P.Stilbs;F.K.Hansen;H.Walderhaug https://doi.org/10.1007/BF00665990
  41. J. Phys. Chem. B v.104 I.Furo;I.Iliopoulos;P.Stilbs https://doi.org/10.1021/jp9927404
  42. Bull. Korean Chem. Soc. v.21 K.W.Paeng;B.S.Kim;E.R.Kim;D.Sohn
  43. J. Phys. Chem. v.77 R.Mills https://doi.org/10.1021/j100624a025
  44. Prog. NMR Spectrosc. v.19 P.Stilbs https://doi.org/10.1016/0079-6565(87)80007-9
  45. Concept Magnetic Res. v.9 W.S.Price https://doi.org/10.1002/(SICI)1099-0534(1997)9:5<299::AID-CMR2>3.0.CO;2-U
  46. Langmuir v.15 L.Masaro;X.X.Zhu https://doi.org/10.1021/la990164x
  47. J. Phys. Chem. v.97 B.Nystrom;H.Walderhaug;F.K.Hansen https://doi.org/10.1021/j100131a052
  48. J. Phys. Chem. B v.102 L.J.Chen;S.Lin;C.C.Huang https://doi.org/10.1021/jp9804345