DOI QR코드

DOI QR Code

Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-Flow Turbomachinery

축류형 유체기계에서 익단 누설 유동 해석을 위한 난류 모델 성능 평가

  • 이공희 (포항공과대학교 기계공학과) ;
  • 백제현 (포항공과대학교 기계공학과)
  • Published : 2003.12.01

Abstract

It is experimentally well-known that high anisotropies of the turbulent flow field are dominant inside the tip leakage vortex, which is attributable to a substantial proportion of the total loss and constitutes one of the dominant mechanisms of the noise generation. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence models based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from the steady-state Reynolds averaged Navier-Stokes simulations based on the RNG k-$\varepsilon$ model and the Reynolds stress model (RSM) are compared with experimental data for two test cases: a linear compressor cascade and a forward-swept axial-flow fan. Through this comparative study of turbulence models, it is clearly shown that the RSM, which can express the production term and body-force term induced by system rotation without introducing any modeling, should be used to predict quantitatively the complex tip leakage flow, especially in the rotating environment.

Keywords

References

  1. Dunham, J. and Meauze, G., 1998, 'An AGARD Working Group Study of 3D Navier-Stokes Codes Applied to Single Turbomachinery Blade Rows,' ASME 98-GT-50
  2. Inoue, M., Furukawa, M., Saiki, K. and Yamada, K., 1998, 'Physical Explanations of Tip Leakage Flow Field in an Axial Compressor Rotor,' ASME 98-GT-91
  3. Lee, G. H. and Baek, J. H., 2002, 'A Numerical Study on the Structure of Tip Clearance Flow in a Highly Forward-Swept Axial-Flow Fan,' ASME-European Conf. on 6th Int. Symp. on Advances in Num. Modeling of Aerodyn, and Hydrodyn, in Turbomachinery, Montreal, Canada
  4. Lee, G. H., Baek, J. H. and Myung, H. J., 2003, 'Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan,' Flow, Turbulence and Combustion(in press) https://doi.org/10.1023/B:APPL.0000004936.88816.ee
  5. Kang, S. and Hirsch, C., 1996, 'Numerical Simulation of Three-Dimensional Viscous Flow in a Linear Compressor Cascade with Tip Clearance,' ASME J. Turbomachinery, 118, pp. 492-505 https://doi.org/10.1115/1.2836694
  6. Myung, H. J. and Baek, J. H., 1999, 'Mean Velocity Characteristics behind a Forward-Swept Axial-Flow Fan,' Int. JSME(B), 42, pp. 476-488
  7. Myung, H. J., 1999, 'An Experimental Study on the Tip Region Flow in an Axial-Flow Fan,' Ph.D. thesis, POSTECH, Korea
  8. FLUENT, 1998, User's Guide Ver.5, FLUENT Inc
  9. Lee, G. H., Baek, J. H. and Myung, H. J., 2002, 'Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan,' Proc. KFMA, Seoul, Korea, pp. 131-136 https://doi.org/10.1023/B:APPL.0000004936.88816.ee
  10. Lee, G. H. and Baek, J. H., 2002, 'Numerical Analysis of Internal Flow through Impeller for Matching Turbocharger,' Final Report, KIMM
  11. Yakhot, V. and Orszag, S. A., 1986, 'Renormalization Group Analysis of Turbulence. I. Basic Theory,' J. Sci. Comp., 1, pp. 3-51 https://doi.org/10.1007/BF01061452
  12. Launder, B. E. and Spalding, D. B., 1974, 'The Numerical Computation of Turbulent Flows,' Comp. Methods App. Mech. Eng., 3, pp. 96-116 https://doi.org/10.1016/0045-7825(74)90029-2
  13. Gerolymos, G. A., Neubauer, J., Sharma, V. C. and Vallet, I., 2002, 'Improved Prediction of Turbomachinery Flows using Near-Wall Reynolds-Stress Model,' ASME J. Turbomachinery, 124, pp. 86-99 https://doi.org/10.1115/1.1426083
  14. Medic, G. and Durbin, P. A., 2002, 'Toward Improved Prediction of Heat Transfer on Turbine Blades,' ASME J. Turbomachinery, 124, pp. 187-192 https://doi.org/10.1115/1.1458020
  15. Kirtly, K. R., Beach, T. A. and Adamczyk, J. J., 1990, 'Numerical Analysis of Secondary Flow in a Two-Stage Turbine,' AIAA-90-2356
  16. Storer, J. A. and Cumpsty, N. A., 1991, 'Tip Leakage Flow in Axial Compressors,' ASME J. Turbomachinery, 113, pp. 252-259 https://doi.org/10.1115/1.2929095
  17. Basson, A. H. and Lakshminarayana, B., 1995, 'Numerical Simulation of Tip Clearance Effects in Turbomachinery,' ASME J. Turbomachinery, 117, pp. 348-359 https://doi.org/10.1115/1.2835668
  18. Gupta, A., Khalid, S. A., McNulty, G. S. and Dailey, L., 2003, 'Prediction of Low Speed Compressor Rotor Flowfields with Large Tip Clearances,' ASME GT-2003-38637
  19. ICEM-CFD, 2002, User's Guide Ver.4.2, ICEM CFD Engineering
  20. GAMBIT, 1998, User's Guide Ver.1, FLUENT Inc.
  21. Van Zante, D. E., Strazisar, A. J., Wood, J. R., Hathaway, T. H. and Okiishi, T. H., 2000, 'Recommendations for Achieving Numerical Simula-tion of Tip Clearance Flows in Transonic Compressor Rotor,' ASME J. Turbomachinery, 122, pp. 733-742 https://doi.org/10.1115/1.1314609
  22. Inoue, M., Furukawa, M., Saiki, K. and Yamada, K., 1998, 'Physical Explanations of Tip Leakage Flow Field in An Axial Compressor Rotor,' ASME 98-GT-91
  23. Lakshminarayana, B., 1986, 'Turbulence Modeling for Complex Shear Flows,', AIAA J., 24,pp. 1900-1917 https://doi.org/10.2514/3.9547
  24. ASME 98-GT-91 Physical Explanations of Tip Leakage Flow Field in An Axial Compressor Rotor Inoue,M.Furukawa,M.;Saiki,K.;Yamada,K.
  25. AIAA J. v.24 Turbulence Modeling for Complex Shear Flows Lakshminarayana,B. https://doi.org/10.2514/3.9547