References
- Harrington, C. A., Rosenow, C., and Retief, J., 'Monitoring gene expression using DNA microarrays,' Curro Opin. Microbiol., vol. 3, pp. 285-291, 2000 https://doi.org/10.1016/S1369-5274(00)00091-6
- Eisen, M. B. and Brown, P. O., 'DNA arrays for analysis of gene expression,' Methods Enzymbol, vol. 303, pp. 179-205, 1999 https://doi.org/10.1016/S0076-6879(99)03014-1
- Dudoit, S., Fridlyand, J. and Speed, T. P., 'Comparison of discrimination methods for the classification of tumors using gene expression data,' Technical Report 576, Department of Statistics, University of California, Berkeley, 2000
- Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M. and Yakhini, N., 'Tissue classification with gene expression profiles,' Journal of Computational Biology, vol. 7, pp. 559-584, 2000 https://doi.org/10.1089/106652700750050943
- Cho, S. - B. and Ryu, J. - W., 'Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features,' Proc. of the IEEE, vol. 90 , no. 11, pp. 1744-1753, 2002 https://doi.org/10.1109/JPROC.2002.804682
- Lashkari, D., Derisi, J., McCusker, J., Namath, A., Gentile, C., Hwang, S., Brown, P., and Davis, R., 'Yeast microarrays for genome wide parallel genetic and gene expression analysis,' Proc. of the Nail. Acad of Sci. USA, vol. 94, pp. 13057-13062, 1997 https://doi.org/10.1073/pnas.94.24.13057
- Derisi, J., Iyer, V. and Brosn, P., 'Exploring the metabolic and genetic control of gene expression on a genomic scale,' Science, vol. 278, pp. 680-686, 1997 https://doi.org/10.1126/science.278.5338.680
- Eisen, M. B., Spellman, P. T., Brown, P. O. and Bostein, D., 'Cluster analysis and display of genome-wide expression patterns,' Proc. of the Natl. Acad of Sci. USA, vol. 95, pp, 14863-14868, 1998 https://doi.org/10.1073/pnas.95.25.14863
- Shamir, R. and Sharan, R., 'Algorithmic approaches to clustering gene expression data,' Current Topics in Computational Biology. In Jiang, T., Smith, T., Xu, Y. and Zhang, M. Q. (eds), MIT press, 2001
- Lipshutz, R. J., Fodor, S. P. A., Gingeras, T. R, and Lockhart, D. J., 'High density synthetic oligonucleotide arrays,' Nature Genetics, vol. 21, pp. 20-24, 1999 https://doi.org/10.1038/4447
- Fuhrman, S., Cunningham, M. J., Wen, X., Zweiger, G., Seilhamer, J. and Somogyi, R, 'The application of Shannon entropy in the identification of putative drug targets,' Biosystems, vol. 55, pp. 5-14, 2000 https://doi.org/10.1016/S0303-2647(99)00077-5
- Thieffry, D. and Thomas, R., 'Qualitative analysis of gene networks,' Pacific Symposium on Biocomputing, vol. 3, pp. 66-76. 1998
- Friedman, N., Linial, M., Nachman, I. and Pe'er, D., 'Using Bayesian networks to analyze expression data,' Journal of Computational Biology, vol. 7, pp. 601-620, 2000 https://doi.org/10.1089/106652700750050961
- Arkin, A., Shen, P. and Ross, J., 'A test case of correlation metric construction of a reaction pathway from measurements,' Science, vol. 277, pp. 1275-1279, 1997 https://doi.org/10.1126/science.277.5330.1275
- Li, L., Weinberg, C. R, Darden, T. A and Pedersen, L. G., 'Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method,' Bioinformatics, vol. 17, no. 12, pp. 1131-1142, 2001 https://doi.org/10.1093/bioinformatics/17.12.1131
- Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C. and Meltzer, P. S., 'Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks,' Nature Medicine, vol. 7, no. 6, pp. 673-679, 2001 https://doi.org/10.1038/89044
- Xu, Y., Selaru, M., Yin, J., Zou, T. T., Shustova, V., Mori, Y., Sato, F., Liu, T. C., Olaru, A., Wang, S., Kimes, M. C., Perry, K., Desai, K., Greenwood, B. D., Krasna, M. J., Shibata, D., Abraham, J. M. and Meltzer, S. I., 'Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett's esophagus and esophageal cancer,' Cancer Research, vol. 62, pp. 3493-3497, 2002
- Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M. and Haussler, D., 'Support vector machine classification and validation of cancer tissue samples using microarray expression data,' Bioirformatics, vol. 16, no. 10, pp. 906-914, 2000 https://doi.org/10.1093/bioinformatics/16.10.906
- Brown, M. P. S., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W., Furey, T. S., Ares, M. Jr. and Haussler, D., 'Knowledge-based analysis of microarray gene expression data by using support vector machines,' Proc. of the Natl. Acad of Sci. USA, vol. 97, pp. 262-267, 2000 https://doi.org/10.1073/pnas.97.1.262
- Golub, T. R, Slonim, D. K., Tamayo, P., Huard, C., GaasenBeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Blomfield, C. D., and Lander, E. S., 'Molecular classification of cancer: Class discovery and class prediction by gene-expression monitoring,' Science, vol. 286, pp. 531-537, 1999 https://doi.org/10.1126/science.286.5439.531
- Tamayo, P., 'Interpreting patterns of gene expression with self-organizing map: Methods and application to hematopoietic differentiation,' Proc. of the National Academy of Sciences of the United States of America, vol. 96, pp. 2907-2912, 1999 https://doi.org/10.1073/pnas.96.6.2907
- Dettling, M. and Buhlmann, P., 'How to use boosting for tumor classification with gene expression data,' Technical Report, Department of Statistics, ETH Zurich, 2002
- Liu, J. and Iba, H., 'Selecting informative genes with parallel genetic algorithms in tissue classification,' Genome Informatics, vol. 12, pp. 14-23, 2001
- Lippman, R. P., 'An introduction to computing with neural nets,' IEEE ASSP Magazine, 4-22, 1987
- Lossos, I. S., Alizadeh, A. A., Eisen, M. B., Chan, W. C., Brown, P.O., Bostein, D., Staudt, L. M., and Levy, R., 'Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas,' Proc. of the Natl. Acad. of Sci. USA, vol. 97, no. 18, pp. 10209-10213, 2000 https://doi.org/10.1073/pnas.180316097
- Li, W. and Yang, Y., 'How many genes are needed for a discriminant microarray data analysis,' Critical Assessment of Techniques for Microarray Data Mining Workshop, 2000
- Nguyen, D. V. and Rocke, D. M., 'Tumor classification by partial least squares using microarray gene expression data,' Bioinformatics, vol. 18, no. 1, pp. 39-50, 2002 https://doi.org/10.1093/bioinformatics/18.1.39