Negative branch의 불안정 공진기를 갖는 슬랩형 도파관 $CO_2$ 레이저

The Slab Waveguide $CO_2$ Laser with Unstable Resonator of Negative Branch

  • 김규식 (목원대 공대 전자공학과) ;
  • 우삼용 (한국표준과학연구원 물리표준부) ;
  • 이영우 (목원대 공대 전자공학과) ;
  • 최종운 (호남대 공대 정보통신공학과)
  • 발행 : 2003.12.01

초록

We have developed the radio frequency excited slab waveguide $CO_2$ laser, The dimension of active area is $2{\times}40{\times}400$ mm to get a laser gain. Two pieces of concave mirror are used to make the unstable resonator of negative branch. The radio frequency is 123 MHz and RF input power is from 100 to 900 W. The laser gas is set to a pressure of 10 ∼ 60 torr and the mixing ration is $CO_2$:$N_2$:He=1:1:3. The laser output power of 50.9 W was obtained with laser power to RF power efficiency of 6.5 %.

키워드

참고문헌

  1. J. L. Lachambre, Appl. Phlys Lett, v.32, 1978
  2. K. M. Abramski, E.F. Plinski, K. Baczyk, 'New resonators for slab-waveguide lasers', SPIE, v. 3186, pp. 167-176, 1997 https://doi.org/10.1117/12.280487
  3. R. Nowack, H. Bochum, T. Hall, K. Wessel, 'High power coaxial $CO_2$ laser', SPIE, v. 3092, pp. 88-99, 1997 https://doi.org/10.1117/12.270189
  4. Antonio Lapucci, Francesco Rossetti, 'Working properties of compact RF-excited $CO_2$ slab lasers', SPIE, v. 3092, pp. 196-200, 1997 https://doi.org/10.1117/12.270215
  5. R. Nowack, H. Opower, U Schaefer, K. Wessel, 'High power $CO_2$ laser waveguide laser of the 1 kW category', Proceedings of SPIE, v. 1276. pp. 18, 1990 https://doi.org/10.1117/12.20528
  6. K. M. Abramski, A. D. Colley, H. J. Baker, 'Power scaling of large area transverse radio frequency discharge $CO_2$ lasers', Appl. Phys. Lett, v54, pp. 1833-1837, 1989 https://doi.org/10.1063/1.101250
  7. Krzysztof M. Abramski, Alan D. Colley, 'High-power two-dimensional waveguide $CO_2$ laser arrays', IEEE J Quantum Electronics, v. 32, pp. 340-349, 1996 https://doi.org/10.1109/3.481882
  8. P. E. Jackson, H. J. Baker, D. R. Hall, 'A $CO_2$ large area laser using a hybrid waveguide unstable resonator', Appl. Phys. Lett., v. 54. pp. 1950-1952, 1989 https://doi.org/10.1063/1.101203
  9. K. M. Abramski, E. F. Plinski, Witkowski, P. A. Duda, R. Nowicki, 'New resonator for slab-waveguide lasers', SPIE, v3186. pp. 167-176, 1997 https://doi.org/10.1117/12.280487
  10. A. Lapucci, F. Rossetti, P. Burlamacchi, 'Beam properties of an RF discharge annular $CO_2$ laser', Opics communications v. 111, 290-296, 1994 https://doi.org/10.1016/0030-4018(94)90468-5
  11. Antonio Lapucci, Francesco Rossetti, Marco Ciofini, 'On the longitudinal voltage distribution in radio-frequency discharged $CO_2$ lasers with large area electrodes', IEEE J. Quantum Electronics, v. 31, pp. 1537-1542, 1995 https://doi.org/10.1109/3.400408
  12. Youn-Myung Kim, chan Eui Youn, and jung Woong Ra, 'Methode for reducing the longitudinal voltage variation in transverse radio-frequency discharge waveguide lasers', J. Appl. Phys. v.54, pp.1127-1129, 1990
  13. Edward F. Plinski, Jerzy S. Witkowski, K. M. Abramski J. Phys. D, 'Algorithm of RF-excited slab-waveguide laser design', Appl. Phys. v. 33, pp. 1823-1826, 2000 https://doi.org/10.1088/0022-3727/33/15/311
  14. S. Sazhin, P. Wild, C. Leys, D. Toebaert and E. Sazhina, 'The three temperature model for the axial flow $CO_2$ laser', J. Phys. D, v. 26, pp. 1872-1883, 1993 https://doi.org/10.1088/0022-3727/26/11/007
  15. S. Muller and J. Uhlenbusch, 'Influence of turbulence and convection on the output of a high-power $CO_2$ laser with a fast axial flow', J. Phys. D, v. 20, pp.697-708, 1987 https://doi.org/10.1088/0022-3727/20/6/004
  16. Naoya Matsuoka, Shigeru, Yamaguchi, 'Theoretical analysis of the radio frequency excited slab $CO_2$ laser', Jpn. J. Appl. Phys, v. 38, pp. 6340-6346, 1999 https://doi.org/10.1143/JJAP.38.6340
  17. H. Hara and S. Nakao, 'Effects of foreign gas on the small signal gain of a thermally pumped $CO_2$ lawer', Optics. communication, v. 27, pp415-418, 1978 https://doi.org/10.1016/0030-4018(78)90412-1