대식세포에서 지단백 산화에 대한 수용성 Chitinous Compounds의 항산화 효과에 대한 연구

Antioxidative Effects of Water-Soluble Chitinous Compounds on Oxidation of Low Density Lipoprotein in Macrophages

  • 이세희 (한림대학교 자연과학대학 생명과학부) ;
  • 박성희 (한림대학교 자연과학대학 생명과학부) ;
  • 이용진 (한림대학교 자연과학대학 생명과학부) ;
  • 윤정한 (한림대학교 자연과학대학 생명과학부) ;
  • 최연정 (한림대학교 자연과학대학 생명과학부) ;
  • 최정숙 (한림대학교 자연과학대학 생명과학부) ;
  • 강영희 (한림대학교 자연과학대학 생명과학부)
  • 발행 : 2003.11.01

초록

It has been proposed that oxidative modification of LDL (oxLDL) plays a significant role in the pathogenicity of atherogenesis. We tested the hypothesis that chitin and chitosan may function as antioxidants with respect to 0.1 mg cholesterol/ml LDL incubated with 5 $\mu$ M Cu$^2$$^{+}$alone or in the P338Dl mouse macrophage system using L-ascorbic acid as a standard classical antioxidant. The degree of oxLDL formation was ascertained by the relative electrophoretic mobility (rEM) in the combination of thiobarbituric acid reactive substances (TBARS) levels, and the cytotoxicity of oxLDL was detected by macrophage viability. The oxLDL uptake and foam cell formation of macrophages were measured by Oil Red O staining. Incubation with Cu$^2$$^{+}$and macrophages increased rEM of LDL and stimulated TBARS formation. Culture of macrophages with LDL in the presence 5 $\mu$ M Cu$^2$$^{+}$induced macrophage death. In cell-free system 200 $\mu$g/ml water-soluble chitosan and chitosan-oligosaccharide blocked oxLDL formation. Water-soluble chitosan and chitosan-oligosaccharide blocked oxLDL formation near-completely relative to L-ascorbic acid, whereas water-soluble chitin and chitin-oligosaccharide had no measurable antioxidant effect. In macrophage system water-soluble chitosan and chitosan-oligosaccharide blocked oxidation of LDL with a significant increase in cell viability, and decreased TBARS in medium. As for the inhibitory effect on macrophage foam cell formation, chitosan and its oligosaccharide, but not watersoluble chitin, revealed the effectiveness. The endothelial expression of lectin-like oxLDL receptor-1 (LOX-1) was tested by Western blot analysis, and chitosan, chitosan-oligosaccharide and chitin-oligosaccharide blocked LOX-1 expression. These results indicate that water-soluble chitosan and its oligosaccharide showed the inhibitory effect on Cu$^2$$^{+}$-induced LDL oxidation of macrophages, and chitosan, chitosan-oligosaccharide and chitin-oligosaccharide had blocking effect on oxLDL receptor expression in the human umbilical vein endothelial system. Thus, water-soluble chitosan and its oligosaccharides possess anti-atherogenic potentials possibly through the inhibition of macrophage LDL oxidation or endothelial oxLDL receptor expression depending on chemical types.l types.

키워드

참고문헌

  1. Nature v.362 The pathogenesis of atherosclerosis: A perspective for the 1990s Ross,R. https://doi.org/10.1038/362801a0
  2. Am Heart J v.113 Relationship of intermediate and low-density lipoprotein subspecies to risk of coronary artery disease Krauss,R.M. https://doi.org/10.1016/0002-8703(87)90636-3
  3. J N Engl J Med v.320 Beyond cholesterol: Modifications of low-density lipoprotein that increase in atherogenisty Steinberg,D.;Parthasarathy,S.;Carew,R.E.;Khoo,J.C.;Witztum,J.L. https://doi.org/10.1056/NEJM198904063201407
  4. J Clin Invest v.88 role of oxidized low density lipoprotein in atherogenesis Witztum,J.L.;Steinberg,D. https://doi.org/10.1172/JCI115499
  5. J Biol Chem v.271 Mechanism of uptake of copperoxidized low density lipoprotein in macrophages is dependent on its extent of oxidation Lougheed,M.;Steinbrecher,U.P. https://doi.org/10.1074/jbc.271.20.11798
  6. Arteriosclerosis v.4 Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation Morel,D.W.;Dicorleto,P.E.;Chisolm,G.M. https://doi.org/10.1161/01.ATV.4.4.357
  7. Proc natl Acad Sci USA 86 Low density lipoprotein undergoes oxidative modification in vivo Wulf,P.;Mochael,E.R.;Weppo,Y.H.;Geoff,C.G.;Steve,S.S.
  8. Am J Pathol v.138 Minimally oxidized low density lipoprotein induce tissue factor expression in cultured human endothelial cells Drake,T.A.;Hanani,K.;Fei,H.;Lavi,S.;Berliner,J.A.
  9. Proc Natl Acad Sci USA 76 Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition Goldstein,J.L.;Ho,Y.K.Basu,S.K.;Brown,M.S.
  10. Trend Food Sci Technol v.10 Food applications of chitin and chitosan Shahidi,F.;Arachchi,J.K.V.;Jeon,Y. https://doi.org/10.1016/S0924-2244(99)00017-5
  11. Biotechnol Genet Eng Rev v.13 Applications of chitin and chitosan for biomaterials Shigemesa,Y.;Minami,S.
  12. biochem Biophys Res Comm v.271 Chitinous materials inhibit nitric oxide production by activated RAW 264.7 Macrophages Hwang,S.M.;Chen,C.Y.;Chen,S.S.;Chen,J.C. https://doi.org/10.1006/bbrc.2000.2602
  13. Am J Clin Nutr v.33 A novel use of chitosan as a hypocholesterolemic agent in rats Sugano,M.;Fujikawa,T.;Hiratsuji,Y.;Nakashima,K.;Fukuda,N.;Hasegawa,Y.
  14. Biosci biotech Biochem v.57 Hypocholesterolemic effect of chitosan in adult males Maezaki,Y.;Tsuji,K.;Nakagawa,Y.;Kawai,Y.;Akimoto,M.;Tsugita,T.;Takekawa,W.;Terada,A;Hara,T.;Mitsuoka,T. https://doi.org/10.1271/bbb.57.1439
  15. Bioorg Med Chem Lett v.11 Antioxidant activity of water-soluble chitosan derivatives Xie,W.;Xu,P.;Liu,Q. https://doi.org/10.1016/S0960-894X(01)00285-2
  16. Biosci Biotechnol Biochem v.62 Antioxidative activities of several marine olysaccharides evaluated in a phosphatidylcholine-liposomal suspension and organic solvents Xue,C.;Cuangli,Y.;takashi,H.;Junji,T.;Hong,L. https://doi.org/10.1271/bbb.62.206
  17. J Chitin Chitosan v.6 Antimicrobial activity and antioxidative of water soluble chitosan Jung,B.O.;Chung,S.J.;Lee,Y.M.;Kim,J.J.;Suh,s.B.;Lee,G.W.
  18. Atherosclerosis v.82 Physiologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein Grundy,S.M.;Jialai,I.;Vega,G.L. https://doi.org/10.1016/0021-9150(90)90039-L
  19. Metabolism v.41 Oxidative modification of lipoprotein and the effect of β-carotene Davignon,J.;Naruszewics,M.;Selinger,E. https://doi.org/10.1016/0026-0495(92)90012-Y
  20. Lancet v.342 Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study Hertog,M.G.;Feskens,E.J.;Hollman,P.C.;Katan,M.B.;Kromhout,D. https://doi.org/10.1016/0140-6736(93)92876-U
  21. Proc Natl Acad Sci USA 73 Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts Basu,S.K.;Goldstein,J.L.;Anderson,R.G.W.;Brown,M.S.
  22. Matabolism v.32 Heterogeneity of plasma low density lipoprotein: manifestation of the physiologic phenomenon in man Fisher,W.R. https://doi.org/10.1016/0026-0495(83)90194-4
  23. J Biol Chem v.193 Protein measurement with the Folin phenol reagent Lowry,O.H.;Rosebrough,N.J.;Farr,A.L.;Randall,R.J.
  24. J Immun Methods v.89 Rapid colorimetric assay for cell growth and survival. Modification to the tetrazolium dye procedure giving improved sensitivity and reliability Denizot,F.;Lang,R. https://doi.org/10.1016/0022-1759(86)90368-6
  25. Methods Enzymol v.52 Microsomal lipid peroxidation Burge,J.A.;Aust,S.D. https://doi.org/10.1016/S0076-6879(78)52032-6
  26. Clin Chem v.19 Improved techniques for assessment of plasma lipoprotein patternsⅠ.Precipitation in gels after electrophoresis with polyanionic compounds Seidel,D.;Wieland,H.;Ruppert,C.
  27. Clin Chem v.24 A descriptive study of the different electrophoretic patterns on agarose of human serum very low density liporprotein Demacker,P.N.M.;Vos-Janssen,H.E.;Van't Laar A.;Jansen,A.P.
  28. J Clin lnvest v.94 Pathophysiological concentration of glucose promotes oxidative modification of low density lipoprotein by a superoxide-dependent pathway Kawamura,M.;Heinecke,J.W.;Chait,A. https://doi.org/10.1172/JCI117396
  29. J Cell Biol v.74 Metabolism of cationized liporproteins by human fibroblasts Basu,S.K.;Anderson,R.G.W.;Goldstein,J.L.;Brown,M.S. https://doi.org/10.1083/jcb.74.1.119
  30. Circulation v.103 Evidence of macrophage foam cell formation by very low-density lipoprotein receptor Kosaka,S.;Takahashi,S.;Masamura,K.;Kanehara,H.;Sakai,J.;Tohda,G.;Okada,E.;Oida,K.;Iwasaki,T.;Hattori,H.;Kodama,T.;Yamamoto,T.;Miyamori,T. https://doi.org/10.1161/01.CIR.103.8.1142
  31. J Clin Invest v.52 Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria Jaffe,E.A.;Nachman,R.L.;Becker,C.G.;Minick,C.R. https://doi.org/10.1172/JCI107470
  32. J Cell Biol v.99 Identification and isolation of endothelial cells based on their increased uptake of acetyl-low density lipoprotein Voyta,J.C.;Via,D.P.;butterfield,C.E.;Zetter,B.R. https://doi.org/10.1083/jcb.99.6.2034
  33. Biochem J v.286 Stimulation of lipid peroxidation and gydroxyl-radical generation by the contents of human atherosclerotic lesions Smith,C.;Mitchinsion,M.J.;Aruoma,O.I.;Halliwell,B.
  34. Nature v.386 An endothelial receptor for oxidized low-density lipoprotein Sawamura,T.;Kume,N.;aoyama,O.I.;Moriwaki,H.;Hoshikawa,J.;Aiba,Y. https://doi.org/10.1038/386073a0
  35. Curr Opin Lipidol v.1 Free radical, lipid peroxidation and atherosclerosis Bruckdorfer,K.R. https://doi.org/10.1097/00041433-199012000-00008
  36. Biochim biophys Acta v.1213 Dynamics of the oxidation of low density liporprotein induced byfree radicals NiKi,E.;Noguchi,N.;Gotoh,N. https://doi.org/10.1016/0005-2760(94)90024-8
  37. Arterioscler Thromb Vasc Biol v.18 Ligand specificity of LOX-a, a novel endothelial receptor for oxidized low density lipoprotein Moriwaki,H.;Kita,T.;Sawamura,T.;Aoyama,T.;Hoshikawa,H.;Ochi,H.;Nishi,E.;Masaki,T.;Kita,R. https://doi.org/10.1161/01.ATV.18.10.1541
  38. Biochem Biophys Res Commun v.248 Identification and autoregulation of receptor for OX-LDL in cultured human coronary artery endothelial cells Mehta,J.L.;Li,D.Y. https://doi.org/10.1006/bbrc.1998.9004
  39. Circ Res v.83 Inducible expression of lictin-like oxidized LDL receptor-1 in vascular endothelial cells Kume,N.;Murase,T.;Moriwaki,H.;Aoyama,T.;Sawamura,T.;Masaki,Y.;Kita,T. https://doi.org/10.1161/01.RES.83.3.322
  40. Cire Res v.84 Upregulation of endothelial receptor for oxidized low-density lipoprotein(LOX-1) in cultured human coronary artery endothelial cells by angiotensinⅡ type 1 receptor activation Li,D.Y.;Zhang,Y.C.;Philips,M.I.;Sawamura,T.;Mehta,J.L. https://doi.org/10.1161/01.RES.84.9.1043
  41. Biochem Biophys Res Commun v.276 Upregulation of LOW-1 expression in aorta of hypercholesterolemic rabbits: Modulation by Iosartan Chen,H.:Li,D.Y.;sawamura,T.;Mehta,J.L. https://doi.org/10.1006/bbrc.2000.3532
  42. Circulation v.99 Expression of lectin-like oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions Kataoka,H.;Kume,N.;Miyaoto,S.;Minami,M.;Moriwake,H.;Murase,T.;Sawammura,T.;Masaki,T.;Hashimoto,N.;Kita,T. https://doi.org/10.1161/01.CIR.99.24.3110