Face Recognition Robust to Brightness, Contrast, Scale, Rotation and Translation

밝기, 명암도, 크기, 회전, 위치 변화에 강인한 얼굴 인식

  • Published : 2003.11.01

Abstract

This paper proposes a face recognition method based on modified Otsu binarization, Hu moment and linear discriminant analysis (LDA). Proposed method is robust to brightness, contrast, scale, rotation, and translation changes. Modified Otsu binarization can make binary images that have the invariant characteristic in brightness and contrast changes. From edge and multi-level binary images obtained by the threshold method, we compute the 17 dimensional Hu moment and then extract feature vector using LDA algorithm. Especially, our face recognition system is robust to scale, rotation, and translation changes because of using Hu moment. Experimental results showed that our method had almost a superior performance compared with the conventional well-known principal component analysis (PCA) and the method combined PCA and LDA in the perspective of brightness, contrast, scale, rotation, and translation changes with Olivetti Research Laboratory (ORL) database and the AR database.

본 논문에서는 변형 Otsu 이진화 방법, Hu 모멘트 및 선형 판별 분석(linear discriminant analysis, LDA)를 기반으로 밝기, 명암도, 크기, 회전 위치 변화에 강인한 얼굴 인식 방법을 제안하고자 한다. 제안한 변형 Otsu 이진화를 사용하여 밝기 및 명암도에 불변한 이진 영상들을 만든다. 그런 후 생성된 얼굴 영상의 경계 영상 및 다단계 이진영상으로부터 총 17개의 Hu 모멘트를 계산한 다음 LDA 방법을 적용하여 최종 특징 벡터를 추출한다. 특히 제안하는 얼굴 인식 방법은 Hu 모멘트를 이용함으로써 크기, 회전 및 위치 변화에도 강인한 특성을 갖고 있다. Olivetti research laboratory (ORL) 데이터베이스와 AR 데이터베이스의 총 100명의 얼굴 영상에 대해 기존의 주요 성문 분석(Principal component analysis, PCA) 방법 및 PCA와 LDA를 결합한 얼굴 인식 방법과 비교 실험한 결과, 제안한 얼굴 인식 방법은 대체적으로 기존 방법보다 뛰어난 인식 성능을 보였다.

Keywords

References

  1. R. Chellappa and S. Sirohey, 'Human and Machine Recognition of Faces: A Survey,' Proceedings of the IEEE. vol. 83, no. 5. May 1995 https://doi.org/10.1109/5.381842
  2. S. Pankanti, R. M. Bolle, and A. Jain, 'Biometrics: The Future of Identification', Computer Magazine, pp. 46-49, Feb. 2000 https://doi.org/10.1109/2.820038
  3. A. P. Pentland and M. A. Turk, 'Face Recognition Using Eigenfaces,' in Proc. the International Conference on Pattern Recognition, pp. 586-591, 1994
  4. P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, 'Eigenfaces vs. Fisherfaces : recognition using class specific linear projection,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-720, July 1997 https://doi.org/10.1109/34.598228
  5. X. Y. Zeng, Y. W. Chen, and Z. Nakao, 'Image Feature Representation by the Subspace of Nonlinear PCA,' in Proc. International Conference on Pattern Recognition, pp. 11-15, Aug. 2002 https://doi.org/10.1109/ICPR.2002.1048280
  6. K. I. Kim, K Jung, and H. J. Kim, 'Face Recognition Using Kernel Principal Component Analysis,' IEEE Signal Processing Letters, vol. 9, no. 2, Feb. 2002 https://doi.org/10.1109/97.991133
  7. B. Due, S. Fisher, and J. Bigun, 'Face Authentication with Gabor Information on Deformable Graphs,' IEEE Trans. on Image Processing, vol. 8, no. 4, April 1999 https://doi.org/10.1109/83.753738
  8. S. C. Lee, H. S. Kim, S. J. Park, and S. H. Park, 'Face Recognition Technology in the Dynamic Link Architecture,' in Proc. the International Conference on Electrical Engineering, pp. 265-268, 1999
  9. L. Wiskott, J. M. Fellous, N. Kruger, and C. Malsburg, 'Face Recognition by Elastic Bunch Graph Matching,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 775-779, 1997 https://doi.org/10.1109/34.598235
  10. M. S. Oh, D. W. Kim, and D. S. Jeong, 'Face Identification System Using Combined Facial Features and Counter-Propagation Neural Network,' 신호처리합동학술대회, 제 6권, pp. 266-269, 1993
  11. Y. Cao and K. H. Leung, 'Face Recognition Using Line Edge Map,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 6, pp. 764-779, 2002 https://doi.org/10.1109/TPAMI.2002.1008383
  12. 심영미, 장주석, 김종규, 'Fourier 변환된 얼굴의 진폭스펙트럼의 Karhunen-Loeve 근사 방법에 기초한 변위불변적 얼굴인식,' 전자공학회논문지, 제 35권, C편, 제 3호, 1998
  13. M. Nixon, 'Automated facial recognition and its potential for security,' in IEE Colloq, Dig. (80): Colloq. on MMI in Computer Security, pp. 5/1-4, 1986
  14. A. M. Martinez and R. Benavente, 'The AR Face Database,' CVC Technical Report no. 24, June 1998
  15. 김광섭, 이상묵, 정동석, '윤곽선 방향의 히스토그램과 Sampled Spot Matching을 이용한 이치형상의 인식 알고리즘,' 전자공학회논문지, vol. 28, no. 10, pp. 69-77, 1992
  16. N. Otsu, 'A threshold selection method from gray level histogram,' IEEE SMC-9, no. 1, pp. 62-66, 1979
  17. K. Fukunaga, Introduction to Statistical Pattern Recogntion, New York Academic, 1972
  18. H. J. Lee and J. H. Chung, 'Brightness, Contrast, Scaling, Rotation and Translation Invariant Feature Extraction by Multi-level Thresholding and Moment,' Submitted IEICE
  19. R. C. Gonzalez, P. Wintz, Digital image processing, Addision-Wesley, 1987
  20. M. K. Hu, 'Pattern recognition by moment invariants,' Proc. IEEE, vol. 49, no. 9, p. 1428, Sept. 1961
  21. M. K. Hu, 'Visual pattern recognition by moment invariants,' IRE Transactions on Information Theory, vol. 17-8, no. 2, pp. 179-187, Feb. 1962 https://doi.org/10.1109/TIT.1962.1057692
  22. J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, 'Face Recognition Using LDA-Based Algorithms,' IEEE Trans. Neural Networks, vol. 14, no. 1, pp. 195-200, Jan. 2003 https://doi.org/10.1109/TNN.2002.806647
  23. 이형지, 정재호, 'Fisherface 알고리즘과 Fixed Graph Matching을 이용한 얼굴 인식,' 전자공학회논문지, 제 38권, SP편, 제 6호, 2001
  24. D. L. Swets, and J. Weng, 'Using discriminant eigenfeatures for image retrieval,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp. 831-836, August 1995 https://doi.org/10.1109/34.531802
  25. S. Z. Li and J. Lu, 'Face recognition using the nearest feature line method,' IEEE Trans. Neural Networks, vol. 10, pp. 439-443, Mar. 1999 https://doi.org/10.1109/72.750575