THE DUAL OF A FORMULA OF VISKOV

FRANCISZEK HUGON SZAFRANIEC

ABSTRACT. This minipaper offers a formula which is dual to that of Viskov [5]. While Viskov's can be thought of as a rising formula for Laguerre polynomials, ours is precisely the lowering one. Besides documenting the formula, which seems to be missing, we want to provide a (rather elementary) operator theory argument instead of making crude calculations. In other words, the annihilation and creation *operators* are confronted with lowering and rising *formulae*; they are often failed to be distinguished.

The Laguerre polynomials $L_n^{(\alpha)}$, $n = 0, 1, \ldots, \alpha > -1$, can be given as

$$L_n^{(\alpha)}(x) = \frac{1}{n!} x^{-\alpha} e^x \frac{d^n}{dx^n} [x^{n+\alpha} e^{-x}], \quad n = 1, 2, \dots, \quad L_0^{(\alpha)} = 1.$$

The formula proven in [5] and generalizing that of [2] is

(1)
$$(n+1)L_{n+1}^{(\alpha)}(x)x = [-xD^2 - (\alpha+1-2x)D + (\alpha+1-x)]L_n^{(\alpha)}(x),$$

for $n = 0, 1, \ldots$ with the shorthand notation $D \stackrel{\text{df}}{=} \frac{d}{dx}$.

The dual formula

The formula is (with convention $L_{-1}^{(\alpha)} = 0$)

(2)
$$(n+\alpha)L_{n-1}^{(\alpha)}(x) = [-xD^2 - (\alpha+1)D + 1]L_n^{(\alpha)}(x), \quad n = 0, 1, \dots$$

To prove it consider the Hilbert space $\mathcal{L}^2([0,+\infty), x^{\alpha}e^{-x}dx)$ and denote by R the operator which appears in the right hand side of (1), that is more precisely

$$R \stackrel{df}{=} -xD^2 - (\alpha + 1 - 2x)D + (\alpha + 1 - x), \quad \mathcal{D}(R) \stackrel{df}{=} \mathbb{C}[X].$$

Received October 2, 2002.

²⁰⁰⁰ Mathematics Subject Classification: Primary 33C45; Secondary 47A05.

Key words and phrases: Laguerre polynomials, raising and lowering formulae, weighted shift operator.

If $\langle \cdot, - \rangle$ stands for the inner product in $\mathcal{L}^2([0, +\infty), x^{\alpha} e^{-x} dx)$, integration by parts gives us for $f, g \in \mathcal{D}(R)$

$$\langle xDf, g \rangle = fx^{\alpha+1} e^{-x} \bar{g}|_0^{+\infty} - \int_0^{+\infty} (f((\alpha+1)-x)x^{\alpha} e^{-x} \bar{g} + fx^{\alpha+1} e^{-x} \bar{g}') dx.$$

Since $\alpha > -1$, we infer that $\mathbb{C}[X] \subset \mathcal{D}((xD)^*)$ and

(3)
$$(xD)^* = -(\alpha + 1) + x(1 - D).$$

Now we can perform further calculations as follows (using (3) a couple of times and the fact that multiplication by x in the Hilbert space in question is a symmetric operator)

$$\begin{split} \langle Rf,g \rangle \\ &= -\langle (xD+\alpha+1)Df,g \rangle + 2\langle xDf,g \rangle + (\alpha+1)\langle f,g \rangle - \langle xf,g \rangle \\ &= -\langle Df,x(1-D)g \rangle + 2\langle xDf,g \rangle + (\alpha+1)\langle f,g \rangle - \langle xf,g \rangle \\ &= -\langle xDf,(1-D)g \rangle + 2\langle xDf,g \rangle + (\alpha+1)\langle f,g \rangle - \langle f,xg \rangle \\ &= -\langle f,(-(\alpha+1)+x(1-D))(1-D)g \rangle \\ &+ 2\langle f,(-(\alpha+1)+x(1-D))g \rangle + (\alpha+1)\langle f,g \rangle - \langle f,xg \rangle \\ &= \langle f,[-xD^2-(\alpha+1)D+1]g \rangle. \end{split}$$

Hence

(4)
$$R^* = -xD^2 - (\alpha + 1)D + 1.$$

Set
$$l_n^{(\alpha)} \stackrel{df}{=} \sqrt{\frac{n!}{\Gamma(n+\alpha+1)}} L_n^{(\alpha)}$$
. Then (1) reads as

(5)
$$R \, l_n^{(\alpha)} = \sqrt{(n+1)(n+\alpha+1)} \, l_{n+1}^{(\alpha)}.$$

Due to orthogonality

$$\int_0^\infty L_m^{(\alpha)}(x) L_n^{(\alpha)}(x) x^{\alpha} \mathrm{e}^{-x} \mathrm{d}x = \frac{\Gamma(n+\alpha+1)}{n!} \delta_{m,n}, \quad m,n=0,1,\ldots,$$

 $\{l_n^{(\alpha)}\}_{n=0}^{\infty}$ is an orthonormal basis in $\mathcal{L}^2([0,+\infty),x^{\alpha}\mathrm{e}^{-x}\mathrm{d}x)$. Thus the operator R act as an unbounded weighted shift with respect to $\{l_n^{(\alpha)}\}_{n=0}^{\infty}$ with the weights $\{\sqrt{(n+1)(n+\alpha+1)}_n\}_{n=0}^{\infty}$. Consequently, the adjoint R^* must necessarily be a backward weighted shift, that is

$$R^* l_n^{(\alpha)} = n \sqrt{n(n+\alpha)} l_{n-1}^{(\alpha)}.$$

Going back to the Laguerre polynomials $\{L_n^{(\alpha)}\}_{n=0}^{\infty}$ we get immediately by (4) the wanted formula (2).

Back to Viskov's formula

For the reader to enjoy more the paper we propose a brisk *proof* of (1). It uses the well know formula

$$[1-D]L_{n-1}^{(\alpha)} = -DL_n^{(\alpha)}$$

as well as the Laguerre differential equation

$$[xD^2 + (\alpha+1-x)D]L_n^{(\alpha)} = -nL_n^{(\alpha)}$$

and goes as follows

$$[-xD^{2} - (\alpha + 1 - 2x)D + (\alpha + 1 - x)]L_{n}^{(\alpha)}$$

$$= [xD + (\alpha + 1 - x)][1 - D]L_{n}^{(\alpha)} = [xD + (\alpha + 1 - x)][-D]L_{n+1}^{(\alpha)}$$

$$= (n+1)L_{n+1}^{(\alpha)}.$$

References

- [1] R. Koekoek and R. F. Swarttouw, *The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue*, Delft University of Technology, Report of the Department of Technical Mathematics and Informatics no. 98-17, 1998.
- [2] L. B. Redei, An identity for Laguerre polynomials, Acta Sci. Math. (Szeged) 37 (1975), 115–116.
- [3] Jan Stochel and F. H. Szafraniec, A few assorted questions about unbounded subnormal operators, Univ. Iagel. Acta Math. 28 (1991), 163–170.
- [4] F. H. Szafraniec, Orthogonal polynomials and subnormality of related shift operators, "Orthogonal polynomials and their applications" Proc., Segovia (Spain), 1986 Monogr. Acad. Cienc. Zaragoza R.-C. Palacios 1 (1988), 153–155.
- [5] O. V. Viskov, L. B. Redei identity for Laguerre polynomials [in Russian], Acta Sci. Math. (Szeged) 39 (1977), 27–28.

Instytut Matematyki, Uniwersytet Jagielloński, ul. Reymonta 4, PL-30059 Kraków

 $\textit{E-mail} : \ fhszafra@im.uj.edu.pl$