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A NOTE ON INVARIANT SUBSPACES
FOR OPERATOR ALGEBRAS

ALAN LAMBERT

ABSTRACT. Various operator relationships are shown to be equiv-
alent to the existence of an invariant subspace for an algebra of
operators.

1. Introduction

Although many of the results and techniques found in this note ap-
ply in a Banach space setting, we shall focus our attention to that of a
complex Hilbert space H, and bounded linear operators on H. The most
celebrated unsolved problem in the field of (Hilbert space) operator the-
ory is whether for every bounded operator one can find a proper closed
linear subspace which is invariant for that operator. An apparently more
difficult problem is the transitive algebra problem:

Given a weakly closed algebra of operators A on H for which there
does not exist a proper (closed, linear) subspace of H invariant under all
the operators of A, must A be the algebra of all operators on H?

An algebra of operators without common proper invariant subspace
is said to be transitive. Burnside’s classical linear algebra result supplies
an affirmative answer to the preceding question when H is finite dimen-
sional. In 1963 W. B. Arveson showed in [1] how Burnside’s techniques
could be modified so as to characterize transitivity in terms of densely
defined unbounded operators commuting with (all of the members of)
the algebra. His method proved quite useful in establishing results of
the form.

If A is a transitive algebra containing —, then A is the ring of all
operators.
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Here, of course, the name of the game is to fill in — with specific operator
entities; e.g.

- a maximal abelian von Neumann algebra ([1]});

- the unilateral shift ([1]);

- a strictly cyclic operator ([3]);
and in conjunction with Lomonosov’s result cited below

- a compact operator ([5] and [6]).

Invariant subspace investigations took a different tack after the ap-
pearance of V. Lomonosov’s innovative use of compact operators. This
result and several of its consequences will be presented in detail later in
this note. We shall bring together several statements shown to be equiv-
alent to the assertion of the existence of a proper invariant subspace for
an operator algebra. Some, and perhaps most, of these are well known
to operator theory practitioners, some are perhaps novel views of the
former, and a few may be classified as new. Proofs will be provided for
some of the middle group and all of the last.

All operator algebras herein encountered are assumed to be closed in
the weak operator topology and all such operators are assumed to be
bounded and linear. The term invariant subspace will be reserved for
proper closed linear subspaces of the underlying Hilbert space.

2. Notation and preliminaries

Let H be a complex Hilbert space. £(H) is the algebra of all bounded
linear operators on H. If only one space is involved in a specific setting
we will simply write £ for L(H). Q is the set of quasinilpotent operators.
For each positive integer k, N}, = {T : T* = 0}. A subspace is hyperin-
variant for A if it is invariant for every operator in (A)’, the commutant
of A. More generally, a subspace is invariant for a set of operators if it
is invariant for each member of that set. The term projection will be re-
served for a self adjoint idempotent operator. [ is the identity operator.
For an operator T' and a set of operators S, AS = {AS : S € S}; etc.

REsSULTS. We present collections of properties of an algebra equiva-
lent to asserting the existence of a nontrivial invariant subspace for the
algebra. For the sake of clarity of presentation we divide the collection
into three parts. The first of these is related to V. Lomonosov’s now
classic result [4]; see also [2]:

If B is a transitive algebra and K is a non zero compact operator,
then there is an operator B € B such that BK ¢ Q.
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These explicit groupings do not include the two most commonly em-
ployed restatements that are based on, effectively, displaying the invari-
ant subspace:

The algebra A has an invariant subspace if and only if for some nozero
vector x, Az is not dense in H;

The algebra A has an invariant subspace if and only if for some pro-
jection P # 0 or I,(I — P)AP = 0.

Both of these will be employed below on numerous occasions.

PROPOSITION 1. Let A be a unital algebra of operators. The follow-
ing are equivalent:

a) A has a non trivial invariant subspace.

b) There is a non zero compact operator K such that AK C Q.

¢) There is a rank one operator K such that AK C Q.

d) There is a rank one operator K such that AK C Na.

Proof. The implication (b) = (a) is a restatement of what is fre-
quently referred to as Lomonosov’s Lemma

Certainly (d) =>(c) = (b). Suppose (a) holds. We may then choose
non zero vectors u and v such that Au | v. Let A € A. Then

(A(u ®v))? = (Au®v)? =< Au,v >u®v =0,
closing the circle of implications. O

Before establishing the second group of equivalences we exhibit some
elementary properties and examples relating spaces of nilpotent opera-
tors and invariant subspaces. As mentioned above, the definition of the
existence of a proper invariant subspace could be taken as follows: An
algebra A has a proper invariant subspace if and only if there is a pro-
jection P other than 0 or I satisfying (I — P).AP = 0. The equivalences
to be shown shortly may be viewed as a loosening of the projection
requirement.

LEMMA 2. Let M be a linear space of operators that contains the
identity operator, and suppose that (MT)? = 0 for every M in M. Then
TMT =0 for every M in M.

Proof. Let M € M and let p be a member of the resolvent set for M.
Then M — pI € M so that

(M — pI)T(M — pI)T = 0.

Since M — plI is invertible we have T(M — pI)T = 0. But the identity
operator is in M, so that 72 = 0. This in turn shows that TMT =0. O
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REMARK. The condition
TMT =0

for a linear space M does not automatically lead to a proper invariant
subspace for M. To see this, consider the following example: Let

0 01
T={0 0 0
0 00

and let M consist of all three by three matrices with 0 in the lower left
corner. Then M is precisely the set of matrices M for which TMT = 0.
Since

0 00 0 0 00

0 00 0]=1{0 0 0],

010 0 0O 1 00

the smallest algebra containing M is the full matrix ring; consequently
M can have no proper invariant subspace.

We now show that multiplicative structure in this context does indeed
lead to invariant subspaces.

LEMMA 3. Suppose T # 0 and M is a unital linear space of operators
for which TMT = 0. Then every algebra contained in M has a proper
invariant subspace.

Proof. Let A be an algebra contained in M, and let x be a vector for
which Tz # 0. Then ATz is invariant for A. If ATz = {0} then the one
dimensional space CT'z is invariant for A. Otherwise, ATz C kerT, so
that the closure of ATz is a proper invariant subspace for .A. a

PROPOSITION 4. Let A be a unital algebra of operators. The follow-
ing are equivalent:

a) A has a non trivial invariant subspace.

b) There is a non zero operator T such that AT C N.

c¢) There is a non zero operator T such that TAT = {0}.

Proof. The preceding proposition shows that (a) implies (b) (indeed,
T may even be taken to be a rank one operator), and the preceding two
lemmas show that (b) = (c) = (a). O

The next result is separated from the previous chain of equivalences
solely for ease of exposition. A bit of terminology is needed first:
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DEFINITION. Let A be an algebra of operators on the Hilbert space
H. The finite ordered set 7 = {T1,--- ,Tn} of non zero operators is
defined to be a nil set for A if

{Al,Az, cee ,AN} CA= (A1T1)(A2T2) s (ANTN) =0.

The displayed material above will be paraphrased as (4 : 7) = 0. Note
that a statement equivalent to the assertion of the existence of a proper
invariant subspace for an algebra A is that there exists a projection
P #£ 0 or I such that A € A = (I — P)AP = 0; that is to say {A4 :
{I — P,P}} =0. In fact, we need not be so specific about the nil set:

PROPOSITION 5. Suppose that A is a unital algebra with a nil set T
as above. Then A has a proper invariant subspace.

Proof. Let M be the smallest nonnegative integer such that {T1,-- -,
Tar+1} is a nil set for A. Since we may choose A1 = I € A, we have, for
all choices of Ag, -+, Apr41 in A

T1(A2T2)(AsT3) - - (Am+1Tm+1) = 0.
Let B be the linear span of all operators of the form
(AoT2)(A3T3) - - (Am+1Tm+1);  {A2,-- Ams1} C A

The minimality condition on M guarantees that there is a vector z for
which Bz # {0} (since the displayed material above involves only M
members of A4).

Now, for A, Ay, -+, Ap41 € A, since A is an algebra,
(AATy) - (Am+1Tm+1) € B.
Thus ABz C Bz. However, T1 Bz = {0}, so
{0} # Bz C ker T # H;
showing that the closure of Bz is a proper invariant subspace for A. [J

PROPOSITION 6. The following are equivalent

a) A has a proper invariant subspace.

b) A has a nil set.

¢) A has a nil set {T,T}.

d) A has a nil set {T, T}, where T is a rank one operator.

Proof. We need only verify the implication (a) = (d), and this was
established in Proposition 1. U



698 Alan Lambert

References

[1}] W.B. Arveson, A density theorem for operator algebras, Duke Math. J. 34 (1967),
635-647.

[2] J. Conway, A Course in Functional Analysis, second ed., Springer-Verlag, New
York, 1990.

[3] A. Lambert, Strictly cyclic operator algebras, Pacific J. Math. 30 (1971), no. 3,
717-726.

[4] V. Lomonosov, Invariant subspaces of families of operators commuting with a
completely continuous operator, Funkcional Anal. i prilozen 7 (1993), 55-56.

[5] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer, Berlin, 1973.

[6] P. Rosenthal, Some recent results on invariant subspaces, Canadian J. Math.
Bull. 34 (1967), 635-647.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE,
CHARLOTTE, NC 28223, USA
E-mail: allamber@email.uncc.edu



