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SOME CURVATURE CONDITIONS OF
n-DIMENSIONAL QR-SUBMANIFOLDS
OF (p - 1) QR-DIMENSION IN A
QUATERNIONIC PROJECTIVE SPACE QP(nt+p)/4

JIN SUK PakK* AND WON-HO SOHN

ABSTRACT. The purpose of this paper is to study n-dimensional
Q R-submanifolds of (p ~ 1) QR-dimension in a quaternionic pro-
jective space QP("+P)/4 and especially to determine such subman-
ifolds under the curvature conditions appeared in (5.1) and (5.2).

1. Introduction

Let M be a connected real n-dimensional submanifold of real codi-
mension p of a quaternionic Kihler manifold M with quaternionic Kahler
structure {F, G, H}. If there exists an r-dimensional normal distribution
v of the normal bundle TM~ such that

(1.1)

{ Fvy Cvgy Gug C g, Huy Cuy,
Fvl c T,M, Gvt Cc T,M, Hvt C T,M

at each point x in M, then M is called a QR-submanifold of r QR-
dimension, where v denotes the complementary orthogonal distribu-
tion to v in TM* (cf. [1, 8, 9]). Real hypersurfaces, which are typical
examples of @QR-submanifold with » = 0, have been investigated by
many authors (cf. [10, 11, 14, 15, 17, 18]) in connection with the shape
operator and the induced almost contact 3-structure (for definition, see
[3, 5, 6, 7]). Recently, in their paper [8, 9], Kwon and Pak have stud-
ied QR-submanifolds of (p — 1) QR-dimension isometrically immersed
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in a quaternionic projective space QP("tP)/4 and proved the following
theorem as quaternionic analogies to theorems given in [12], which are
also natural extensions of theorems proved in [14] to the case of QR-
submanifolds.

THEOREM K-P. Let M be an n-dimensional Q R-submanifold of (p—
1) QR-dimension isometrically immersed in a quaternionic projective
space QP(™*tP)/4 and let the normal vector field Ni be parallel with
respect to the normal connection. If

A=A, A =9A;, Ai0=04A

on M, then 7~ 1(M) is locally a product of My x My where M, and M,
belong to some (4n; + 3)- and (4ny + 3)-dimensional spheres and A,
denotes the shape operator corresponding to Ny (r is the Hopf fibration
SmHPH3(1) — QP(n+p)/4).

On the other hand, when M is a real hypersurface of QP("+P)/4 if
7~} (M) is (1) an Einstein space or (2) a locally symmetric space, M
has parallel second fundamental form (cf. {10, 14, 17, 19]). Projecting
the quantities on 7~1(M) onto M in QP("+P)/4  we can consider QR-
submanifolds of (p—1) QR-dimension with the conditions corresponding
to (1) or (2). In this paper we shall study such ¢ R-submanifolds iso-
metrically immersed in QP(™"*?)/4 and obtain the theorems stated in the
last Section 6 as quaternionic analogies to theorems given in [16, 20| by
using Theorem K-P.

2. Preliminaries

Let M be a real (n + p)-dimensional quaternionic Kéhler manifold.
Then, by definition, there is a 3-dimensional vector bundle V' consisting
with tensor fields of type (1,1) over M satisfying the following conditions
(a), (b) and (c) :

(a) In any coordinate neighborhood U, there is a local basis {F, G,
H} of V such that

1) {F2=—I, G?=_1, H> = 1,
' FG=-GF=H, GH=-HG=F, HF = -FH = G.

(b) There is a Riemannian metric g which is hermite with respect to
allof F, G and H.
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(¢) For the Riemannian connection V with respect to g

VF 0 r —q F
(2.2) VG |l={|-r 0 p G
VH g -p O H

where p, ¢ and r are local 1-forms defined in . Such a local basis
{F,G,H} is called a canonical local basis of the bundle V in U (cf. 3,
4, 20)).

For canonical local bases {F,G,H} and {'F,’G,’H} of V in coordi-
nate neighborhoods I and ‘U, it follows that in U N'U

'F F
'G | = (Smy) G (II), y=1, 2, 3)
'H H

where s;, are local differentiable functions with (sz,) € SO(3) as a
consequence of (2.1). As is well known (cf. [4]), every quaternionic
Kéhler manifold is orientable.

Now let M be an n-dimensional @R-submanifold of (p — 1) QR-
dimension isometrically immersed in M. Then by definition there is
a unit normal vector field N such that v = Span{N} at each point z
in M. We set

(2.3) U=-FN, V=-GN, W=-HN.

Denoting by D, the maximal quaternionic invariant subspace T, M N
FT,MNGT,M NHT,M of T, M, we have Dy = Span{U, V, W}, where
D} means the complementary orthogonal subspace to D, in T, M (cf.
[1, 8, 9]). Thus we have

T.M =D, ® Span{U,V,W}, Yzc M,
which together with (2.1) and (2.3) implies
FT.M, GT,M, HT,M C T, M & Span{N}.

Therefore, for any tangent vector field X and for a local orthonormal
basis {Ny}a=1...p (N1 := N) of normal vectors to M, we have

FX = ¢X +u(X)N, GX =vX +v(X)N,

24) HX = 60X +w(X)N,
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FNo = -Us+ PiNy, GNy= -V, + PN,

(25) HN, =-W,+ P3N,

(¢ = 1,...,p). Then it is easily seen that {¢,,0} and {P1, P, P3}
are skew-symmetric endomorphisms acting on T, M and T, M, respec-
tively. Moreover, the hermitian property of {F,G, H} implies

g(X7 ¢Ua) = _U(X)Q(NhPlNa),
(2'6) g(X,I/JVa) —"U(X)Q(NhPQNa)’ a=1,...,p,
9(X,0W,) = —w(X)g(N1, P3N,,),

g(Ua: UB) = 6&,3 - g(PlNa,PlNﬁ)v
(27) g(Va, Vﬁ) = 5aﬁ - g(PzNa, PzNg), a,ﬁ = 1, ey Dy
I(Wa, W3) = bap — g(Ps Ny, PsNg).

Also, from the hermitian properties g(F X, N,) = —g(X, FN,), 9(GX,
N,) = —g(X,GN,) and ¢g(HX, N,) = —g(X, HN,), it follows that

9(X,Uy) =u(X)b10, 9(X,Va)=v(X)d1a,
9(X, W) = w(X)b1a

and hence

9(U1, X) = u(X), g(V1,X) = v(X), g(W1,X) = w(X),

(28) Uy=0,Vo=0 Wo=0,a=2,...,p.

On the other hand, comparing (2.3) and (2.5) with o = 1, we have
Uy =U, Vi =V, W; =W, which together with (2.3) and (2.8) implies

U, X) =u(X), g(V,X)=v(X) g(W X)=uw(X),

@9 =1, wv)=1, wW)=1.

In the sequel we shall use the notations U, V, W instead of Uy, V7, W1,
Next, applying F' to the first equation of (2.4) and using (2.5), (2.8)
and (2.9), we have

#*X = —X +u(X)U, w(X)PLN = —u(¢X)N.
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Similarly we have

$*X = - X +u(X)U, ¥*X =-X+v(X)V,

(2.10) )
0°X = —X +w(X)W,

w(X)P.N = —u(¢X)N, ov(X)P.N = —v(pX)N,

(2.11) w(X)PsN = —w(6X)N,

from which, taking account of the skew-symmetry of P, P, and P3 and
using (2.6), we also have

uw(¢X) =0, v(¥X)=0, w(6X)=0,
(2.12) oU =0, YV =0, W =0,
PN=0, P,N=0, P3N=0.

So (2.5) can be rewritten in the form

FN=-U GN=-V, HN=-W,

(2.13) FN, =PiNy, GNy,=PN,, HN,= P3N,

(e = 2,...,p). Applying G and H to the first equation of (2.4) and
using (2.1), (2.4) and (2.13), we have

0X +w(X)N = —p(¢X) — v(¢X)N + u(X)V,
X +v(X)N = 0(8X) + w(pX)N — u(X)W,

and consequently

P(¢X) = —0X +u(X)V, v(¢X) = —w(X),

(2.14) 0(¢X) =X +u(X)W, w(¢X)=v(X).

Similarly the other equations of (2.4) yield

(2.15) ¢(¥X) = 0X +v(X)U, w(yX) = w(X),
' O(X) = —¢X + (X)W, w(@X) = —u(X),
$(0X) = —pX +w(X)U, uw(0X)=—v(X),

(2.16) Y(0X) = ¢X + w(X)V, v(0X)=u(X).
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From the first three equations of (2.13), we also have

WU =W, o(U)=0, U=V, w(l)=0,
(2.17) V=W, wV)=0, 0V=-U wlV)=0
oW =V, uw(W)=0, ¢W=U, vW)=0.

The equations (2.8)-(2.10), (2.12) and (2.14)-(2.17) tell us that M
admits the so-called almost contact 3-structure and consequently n =
4m 4+ 3 for some integer m (cf. [6]).

Now let V be the Levi-Civita connection on M and let V- the normal
connection induced from V in the normal bundle of M. Then Gauss and
Weingarten formulae are given by

(2.18) VxY =VxY + h(X,Y),
(2.19) VxNy=—-AaX+V%N,, a=1,...,p

for X, Y tangent to M. Here h denotes the second fundamental form
and A, the shape operator corresponding to N,. They are related by
R(X,Y) =37 _, 9g(AaX,Y)N,. Furthermore, put

P
(2.20) ViNo = sap(X)Ng,
B=1

where (sos) is the skew-symmetric matrix of connection forms of V+.
Differentiating the first equation of (2.4) covariantly and using (2.2),
(2.4), (2.5), (2.8), (2.18) and (2.19), we have

(Vyd)X = r(Y)PX — q(Y)0X + u(X)A1Y — g(AY, X)U,

(2.21) (Vyw)X = r(Y)w(X) — ¢(Y)w(X) + g(¢pA,Y, X).

From the other equations of (2.4) we also have

(Vy)X = —r(Y)9pX +p(Y)0X +v(X)A1Y — g(ArY, X)V,

(2.22) (VyU)X _ —T(Y)U(X) +p(Y)w(X) + g(’(/JA1Y, X)7

(Vy0)X = q(Y)¢X —p(Y)X + w(X)AY — g(AY, X)W,

(2.23) (Vyw)X = q(Y)u(X) — p(Y)v(X) + g(A,Y, X).
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Next, differentiating the first equation of (2.13) covariantly and com-

paring the tangential and normal parts, we have

VyU =r(Y)V — (Y)W + ¢pA,Y,

2.24 P
(224) 9(AUY) ==Y s15(Y)Pig,, a=2,...

From the other equations of (2.13), we have similarly
VyV =—r(YYU +p( W +9AY,
(2.25)

VyW =q(Y)U —p(Y)V + 60A,Y,
(2.26) P

gA,Y) = = 515(Y)Pyga, @=2,...

B=2

Finally the equation of Gauss is given as follow (cf. [2]) :

(2.27)

9(R(X,Y)Z,W) = g(R(X,Y)Z,W) + ) {9(AaX, Z)g(AaY, W)

- g(AaYv Z)g(Aa-Xv W)}a

g(AV)Y) = st VPaga, a=2,...

» P-

for X,Y, Z tangent to M, where R and R denote the Riemannian cur-

vature tensor of M and M, respectively.

In the rest of this paper we assume that the distinguished normal
vector field N1 := N is parallel with respect to the normal connection
V+. Then it follows from (2.20) that s;5 = 0 and consequently (2.24)-

(2.26) imply

(2.28) AU =0, AV =0, AW =0, a=2,...,p

On the other hand, since the curvature tensor R of QP("*+P)/4 ig of

the form

RX.V)Z = oV, 2)X

- 9(X,2)Y

+g(FY,Z)FX — g(FX,Z)FY -~ 29(FX,Y)FZ
+9(GY,2)GX — g(GX,Z2)GY —29(GX,Y)GZ
+9(HY,Z)HX — g(HX,Z)HY —29(HX,Y)HZ
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for X,Y, Z tangent to QP("*P)/4, (2.27) reduces to

R(X’ Y)Z = g(Y’ Z)X - g(Xa Z)Y
+9(¢Y, Z)X — g(¢X, Z)pY — 29(¢X,Y)pZ
+ (WY, 2)X — g(v X, Z2)YY - 29(v X, Y )¢ Z
+g(0Y, 2)0X — g(6X, Z)8Y — 29(6X,Y)0Z

+ 3 {9(4aY, 2)AcX — g(AaX, Z)AsY}.

(2.29)

3. Fibrations and immersions

From now on n-dimensional @ R-submanifolds of (p — 1) QR- dimen-
sion isometrically immersed in QP(™*P)/4 only will be considered. More-
over we shall use the assumption and the notations as in Section 2.

Let S™tP+3(a) be the hypersphere of radius a(> 0) in Q(n+r+4)/4
the quaternionic space of quaternionic dimension (n + p + 4)/4, which
is identified with the Euclidean (n + p + 4)-space R"*P*%. The unit
sphere S"*P*3(1) will be briefly denoted by S"*P*3. Let 7 : Sn+P+3 —
QP("tP)/4 be the natural projection of S*TP+3 onto QP(™*+P)/4 defined
by the Hopf-fibration S° — §™+p+3 — QP(+P)/4  As is well known
(cf. [3, 5, 22]), S™P+3 admits a Sasakian 3-structure {E, 7,¢ } which are
mutually orthogonal unit Killing vector fields. Thus it follows that

(3.1) Ve€ =0, Viii=0, V(=0

(82) Vai=-Vil=§ Vi=-V&=7, Vs{=-Va=¢,

where ¥ denotes the Riemannian connection with respect to the canon-
ical metric g on S™tP+3 (cf. [3, 5, 6, 7, 14, 16, 19]). Moreover each
fibre #~1(z) of  in QP(™*P)/* is a maximal integral submanifold of the
distribution spanned by §~, 7 and E . Thus the base space QP("tP)/4 ad-
mits the induced quaternionic Kahler structure of constant ()-sectional
curvature 4 (cf. [3, 5]). Especially we have a fibration 7 : 7=*(M) — M
which is compatible with the Hopf-fibration 7. More precisely speaking
77 (M) — M is a fibration with totally geodesic fibers such that
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the following diagram is commutative :

71'_1(M) i gn+p+3

gl |7

M —, Qpmp/e

where i : 771 (M) — §™tPt3 and i : M — QP™tP)/4 are isometric
immersions.

Now, let £,77 and ¢ be the unit vector fields tangent to the fibers of
n~1(M) such that i, = &, i,n = 7j and ¢, = ¢. (In what follows we
shall again delete the ' and ¢/ in our notation.) Furthermore we denote
by X* the horizontal lift of a vector field X tangent to M. Then the
horizontal lifts N* (o« = 1,...,p) of the normal vectors N, to M form an
orthonormal basis of normal vectors to 7~1(M) in S"P*3. Let A/, and
sl 5 be the corresponding shape operators and normal connection forms,
respectively. Then, as shown in [8, 9, 13, 15, 19, 21], the fundamental
equations for the submersion 7 are given by

Vx Y= (VxY)" +g((¢X)",Y™)¢

(3:3) - g (XY, Y+ g ()7, Y*)C,

sy YISO 200 ¥
' + 29" (W X)*,Y*)n+ 24’ ((6X)*,Y*)¢,

5) Vx-€ ='VeX* = —(¢X)*, 'V = 'V X* = —(4X)",
' Vxel = VX" = —(0X)",

(3.6) X*,€ =0, [X*n=0, [X*(=0

where g’ denotes the Riemannian metric of #~1(M) induced from § that
of §7tP*3 and 'V the Levi-Civita connection with respect to g’. The
similar equations are valid for the submersion 7 by replacing ¢, ¢, ¢
(resp. &, n, ¢) with F, G, H (resp. &, 7, ¢) respectively. We denote
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by 'V+ the normal connection of 7~ }(M) induced from V. Since the
diagram is commutative, V x+ N implies

'Vg.N— AL X*
= (VxNo)* +G(FX)*, N)E+G(GX)*, N7+ G((HX)*, N2)¢
= — (AaX)" + 9(Ua, X)* € + 9(Va, X)*n + g(Wa, X)*¢ + (Vx No)*

because of (2.5), (2.19) and (3.3), from which, comparing the tangential
part, we have

(37)  ALX" = (AaX)" = 9(Ua, X)*€ = 9(Va, X) ™1 = g(Wa, X)*C.
Next, calculating €7§N; and using (2.5), (2.19) and (3.5), we have
'ViNG — ALE = —(FNo)* = Uy — (PING)",

which yields
ALg=-U;

and similarly

(3.8) Al =-Ug, Agn= V5, A, =-W,.

Hence (3.7) and (3.8) with o = 1 imply

(3.9)  AX"=(A4X)" —g(U,X)"¢ - g(V,X)"n — g(W, X)"C,

(3.10) Ale = —U*, A =-V* A¢=-W"

4. Co-Gauss equations for the submersion 7 : 7=}(M) — M

In this section we derive the co-Gauss and co-Codazzi equations of
the submersion 7 : 7~1(M) — M for later use.

Differentiating (3.3) with Y = U covariantly along 7~1(M) and using
(2.17) and (3.3)-(3.4), we have

V'V - U*

= (VyVxU)" + {v(X)0Y —w(X)PY}" +g(¢Y, VxU)"¢
+ {9(WY, VxU) + g(Vy X, W) + g(X, VyW)}*n
+ {9(0Y,VxU) — g(Vy X, V) — g(X,VyV)}*C.

(4.1)
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Similarly (3.3) with Y =V and (3.3) with Y = W give

'Vy'VxsV*
= (VyVx V)" +{w(X)oY —u(X)0Y}" + {g(¢Y,VxV)

U2 Uy X W) - g(X, Ty W)Y E + (Y, V)
+ {9(8Y,VxV) +g(VyX,U) + g(X, VyU)}*¢,
,VY*,VX*W*

= (VyVxW)" — {v(X)oY — u(X)yY}*
(4.3) + {g(8Y, VxW) + g(Vy X, V) + g(X, Vy V)}*¢

+ {9(¢Y, VXW) - g(VyX, U) - g(X’ va)}*n

respectively. On the other hand it follows from (2.12), (2.17), (3.3) and
(3.4) that

,V[Y*,X*]U* = (V[yﬂx]U)* + 2g(wY,X)*W* - 2g(9Y,X)*V*

4.4

(44 T gl[Y, X), W) — o([Y, X1, V)¢,

(45) Vive xqV* = (Viy,x}V)" = 29(8Y, X)*W* + 29(6Y, X)*U*
. - g([YwX]?W)*f+g([YvX]’U)*C’

(4.6) Vv x W = (Viy,x)W)" +29(¢Y, X)*'V* — 2¢(¥Y, X)*U*

+ g([Ya X], V)*'g - g([Ya X]7 U)*n
By means of (4.1) and (4.4), we have

R, XU
= {R(Y, X)U} + {w(Y)$X — w(X)WY — v(Y)0X
+ v(X)0Y +29(8Y, X)V — 29(4Y, X)W }*
+ {g(8Y, VxU) — g(6X, Vy U}
+{g($Y, VxU) = g X, VyU) + (X, Vy W) — g(¥, VxW)}*n
+{g(0Y, VxU) — g(6X,VyU) — g(X, Vy'V) + g(Y, VxV)}*¢,
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where 'R denotes the curvature tensor of m~'M with respect to the
connection 'V. Using (2.24)-(2.26), (2.28) and (2.29), we can easily see
that
(4.7)
'R(Y*, XU
= {u(X)Y —u(Y)X +u(A1 X)A1Y —u(AY)A X}
+ {r(V)w(X) — r(X)w(Y) + ¢(Y)v(X) — ¢(X)v(Y)
+ u(X)u(ArY) — u(Y)u(A:1 X)}*¢
+ {p(X)u(Y) — p(Y)o(X) + v(X)u(ArY) — v(Y)u(A1X)}™n
+ {p(X)w(¥) — p(Y)w(X) + w(X)u(A1Y) — w(¥ )u(A1 X)}*¢.
By the same method we can easily verify that (4.2), (4.3), (4.5) and
(4.6) yield
(4.8)
'R, X*)V*
= {v(X)Y —v(Y)X +v(41 X)A1Y —v(AY)A X}"
+ {a(X)u(Y) — ¢(V)u(X) — w(Y)v(A:1X) + u(X)v(A1Y)}7E
+ (Y )w(X) = r(X)w(Y) + p(Y)u(X) — p(X)u(¥)
+ v(X)o(ALY) — v(Y)u(A1 X))}
+ {g(X)w () — ¢(Y)w(X) - w(Y)v(AX) + w(X)o(AY)}C,
(4.9)
'R(Y*, X" YW*
= {w(X)Y —w¥)X + w4 X)AY —w(A,Y)A X}
+ {r(X)u(Y) — r(V)u(X) — u(V)w(A:1 X) + u(X)w(AY)}E
+{r(Ou(Y) = r(Y)(X) — v (41 X) + v(X)w(A4rY)}
+ {g(¥)u(X) = g(X)(¥) + p(¥Y)u(X) - pXu(Y)
+ w(X)w(AY) —w(Y)w(4:1 X)} ¢

Differentiating (3.5) covariantly in the direction of Y* and using (3.3),
we have

'Vy'Vx& == {(Vyd)X + ¢(Vy X)}* — g(¢Y, ¢X)*¢

(4.10) — 9(Y, ¢ X)"n — g(0Y, $X)"¢,

'Vy'Vxn == {(Vy)X + 9(Vy X)}* ~ g(8Y, 9 X)"¢

4.1
(4.11) — Y, PX) ) — g(8Y,$X)"C,
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Vy'Vx: (== {(Vy)X +0(Vy X)}" — 9(¢Y,0X)°¢

4.12 .
12 — g(¥Y,0X)*n — g(0Y,6X)"C.
On the other hand (3.2), (3.4) and (3.5) imply

(4.13)  'Viy- x-€ = —(o[Y, X])" — 29(¢Y, X)*( + 29(0Y, X)™n,
(4.14)  Viysxm = —@Y, X])" + 29(6Y, X)*¢ - 29(6Y, X)7¢,

(4.15) Vv x-1¢ = —(0Y, X])* — 29(¢Y, X)™n + 29(¥Y, X)"¢.
Using (4.10)-(4.12) and (4.13)-(4.15), we have
'R(Y™,X7)¢
(4.16) = —{(Vyd)X — (Vx@)Y}" + {v(Y)u(X) — v(X)u(Y)}'n
+ {w(¥)u(X) —w(X)u(¥)}¢,

"R(Y™, X")n
417) = —{(Vy)X = (Vx)Y}" + {u(Y)o(X) - w(X)u(Y)}¢
+ {w(Y)o(X) — w(X)v(Y)}*C,

/R(Y*’X*)C
(418) = —{(Vy0)X — (VxO)Y}" + {u(Y)w(X) — u(X)w(Y)}*¢
+ {v(V)w(X) - v(X)w(¥)}*n.

5. Some lemmas under the additional assumptions

In this section we investigate n-dimensional @ R-submanifolds of (p —
1) QR- dimension in QP(tP)/4 ynder the additional assumptions

sy (VERELXIUI=0, (VIR)YLXIV=0
. (IVCIR)(Y*,X*)W* — O,
(VeR)(Y*, X")E=0, (V,/RY",X" =0,

(52) (V/R)(Y*, X*)¢ =0.
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We first consider the assumption
(VR)(Y*, X*)U* =0.
Differentiating (4.7) covariantly in the direction of £ and using (2.12),
(3.1), (3.2), (3.5) and the assumption ('V;R)(Y™, X*)U* = 0, we have
—'R((¢Y)", X")U" = 'R(Y™, (¢X)")U"
= {-u(X)pY + u(Y)pX —u(A1 X)pA Y +u(A1Y)pA X}
+ {p(X)w(Y) - p(Y)w(X) + w(X)u(ArY) — w(¥)u(A:1 X)}™n
— {p(X)u(Y) = p(Y)v(X) + v(X)u(A1Y) —o(Y)u(A:1 X)}'C,

from which, taking the vertical component and using (2.14)-(2.17) and
(4.7) itself, we can get

r(X)v(Y) = r(Y)v(X) - r(¢Y)w(X) + r(¢X)w(Y)
(5.3) — q(X)w(Y) + ¢(Y)w(X) — q(¢Y )u(X) + q(6X)v(Y)
—u(X)u(A19Y) + u(Y)u(4:9X) =0,

(5.4) —u(A18Y)o(X) +u(A19X)v(Y) +p(#Y)o(X) —p(¢X)v(Y) = 0,

(5.5)
—u(A16Y)w(X) + u(A16X)w(Y) + p(¢Y)w(X) — p(¢X)w(Y) = 0.

Putting Y = U in (5.3) and using (2.12) and (2.17), we have
(5.6) AU +r(U)V — q(U)W =0.
and consequently
(5.7) r(U) = w(A1U) = u(A W), qU)=v(A1U)=u(AV).
Putting Y = W and X = V in (5.4) and using (2.9) and (2.17) yield
(5.8) p(V) = v(A1U) = u(ALV).

Also, putting Y = V and X = W in (5.5) and using (2.9) and (2.17),
we have

(5.9) p(W) = w(AU) = u(A1W).
Summing up we have
AU = u(AU)U + p(V)V + p(W)W,
p(V) = v(AU) = u(4V) = q(U),

p(W) = w(A,U) = u(A44 W) =r(U).

Thus we have
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LEMMA 5.1. Let M be an n-dimensional Q R-submanifold of (p — 1)
QR-dimension in a quaternionic projective space QP(™tP)/* and let the
normal vector field Ny be parallel with respect to the normal connection.
If the equalities in (5.1) are established, then

AU = u(A,U)U + p(V)V + p(W)W,
AV = qU)U +v(A V)V + (W)W,
AW =r(U)U 4+ r(V)V + w(A, W)W,
p(V) = v(AU) = u(A1V) = ¢(U),
p(W) = w(AU) = uw(A W) =r(U),
gW) =w(A,V) =uv(A W) =r(V).

Next we assume the additional condition
(Ve R)(Y*, X*)¢ = 0.

Differentiating (4.16) covariantly in the direction of £ and using (3.1),
(3.2), (3.5) and the assumption ('"V;R)(Y™*, X*)§ = 0, we have

—'R((¢Y)", X")E —"'R(Y™, (¢X)") = (6(Vy$) X — $(Vx )Y )"
+{w¥)u(X) — w(X)u(¥)}'n - {v(Y)u(X) - v(X)u(Y)}C,

from which, using (2.14)-(2.16), (2.21) and (4.16), we can easily obtain

2 (Y)0X — 2r(X)0Y + 2¢(Y )X — 2q(X)0Y

—u(Y)(pA1X — A16X) + u(X)(PALY — A19Y)
(510)  +r) X - w(X)V) = (X)X - u(Y)V)

— ¢(Y)(w(X)U — w(X)W) + ¢(X)(w(Y)U — w(Y)W)

— (Y)Y X + r(¢X)PY + q(¢Y)0X — ¢(¢X)8Y = 0.

Putting X = U in (5.10) and using (2.9), (2.12) and (2.17), we have

ALY — A19Y — 20(U)OY — 2q(U)Y — u(Y)pA U
(5.11) — 7 (VU = u(Y)V} + g(U){w(¥)U — u(Y)W?}
+r(Y)V = q(Y)W + r(¢Y)W + q(8Y)V =0,
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or equivalently
g(SALY — A19Y, X) — 2r(U)g(6Y; X)
—2q(U)g(4Y, X) + u(Y)u(A:16X)
—r({U){v(Y)u(X) — v(X)u(Y)} + ¢(U){w(Y)u(X) — w(X)u(Y)}
+r(Y)u(X) — ¢(Y)w(X) + r(¢Y)w(X) + q(¢Y)v(X) = 0,

from which, taking the skew-symmetric part, we find
— 4r(U)g(0Y, X) — 4q(U)g(¥Y, X) + u(Y)u(A:16X)

— uw(X)u(A18Y) — 2r(U){v(Y)u(X) — v(X)u(Y)}

(5.12) + 2q(U){w(Y)u(X) — w(X)u(Y)} + r(Y)v(X)
—r(X)u(Y) — ¢(Y)w(X) + ¢(X)w(Y) + r(¢Y )w(X)
—r(¢X)w(Y) + ¢(¢Y)v(X) — ¢(¢X)v(Y) = 0.

Now we replace Y with 8Y in (5.12). Then we have with the aid of

(2.14)-(2.16)

4r(U)g(Y, X) — 4¢(U)g(9Y, X) — 3¢(U)w(Y )v(X) + 2¢(U)v(Y)w(X)
+u(X)u(A19Y) — u(A1 D) u(X)w(Y) — v(Y)u(A16X) + r(6Y)v(X)
— r(X)u(Y) — r(®Y)w(X) - g(0Y)w(X) — g(¥Y)v(X) — ¢(¢X)u(Y)
— r(N{2u(Y)u(X) + 20(Y)v(X) + 3w(Y)w(X)} = 0.

Now we consider the following orthonormal basis

{vavvw)ely"' ,emy¢(5l),"‘ ,¢(€m),1/}(61),-~- 7¢(em)10(61)"" ae(em)}’

which is the so-called ()-basis, where 4m + 3 = dirmnM. Taking the trace
of the above equation with respect to the Q-basis and using Lemma 5.1,
we can easily see 8(2m + 1)r(U) = 0, that is,

r(U) = u(AW) = w(AU) =p(W) =0.

Similarly, replacing Y with ¢Y in (5.12) and using (2.9), (2.12) and
(2.14)-(2.17), we have

g(U) =u(A, V) =v(AU) =p(V) =0,
and consequently (5.6) reduces to

Thus we have



Some curvature conditions of n-dimensional @ R-submanifolds 629

LEMMA 5.2. Let M be as in Lemma 5.1 and let the normal vec-
tor field N, be parallel with respect to the normal connection. If the
equalities in (5.1) and (5.2) are established, then

AlU = U(AlU)U, A1V = ’U(A1V)V, A1W = ’LU(A1W)W,

(513) p(V) _ p(W) — q(U) = q(W) = T'(U) = T(V) =0.

6. Main results

In this section we shall investigate n-dimensional () R-submanifolds of
(p — 1) QR- dimension in QP™*P)/4 under the additional assumptions
(5.1) and (5.2), and prove the following theorem.

THEOREM 6.1. Let M be an n-dimensional Q R-submanifold of (p—1)
QR-dimension in a quaternionic projective space QP("tP)/4 and let the
normal vector field N1 be parallel with respect to the normal connection.
If the equalities (5.1) and (5.2) are established and if

u(A1U) = v(A1V) = w(A W)
on M, then 7= 1 (M) is locally a product of My x My where M, and M,

belong to some (4n1 + 3)- and (4ns + 3)-dimensional spheres (m is the
Hopf fibration S"tP+3(1) — QP +p)/4 ),

Proof. By means of Lemma 5.2, (5.11) and (5.12) yield

(6.1) @AY —A19Y + r(Y)V — gV YW + 7(¢Y)W + ¢(8Y)V = 0,

(6.2) r(Y)u(X) = r(X)o(Y) - ¢(Y)w(X) + ¢(X)w(Y) + r(¢Y)w(X)

—r(@X)w(Y) + ¢(¢Y)v(X) — q(¢X)v(Y) =0,
respectively. Putting X =V in (6.2) and using (5.13), we have
(6.3) r(Y) +q(¢Y) + {g(V) — r(W)}w(Y) = 0.
On the other hand, putting Y = W in (6.1) and using (5.13), we have

qV) —r(W) =v(A4V) —w(4, W).
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If v(A1V) = w(A1W), then ¢(V) = r(W), which together with (6.3)
yields

(6.4) r(Y) +q(¢Y) = 0.
Putting Y = ¢X in (6.4) and using (2.10) and (5.13), we also have
(6.5) —q(Y) +r(¢Y) =0.
Hence it follows from (6.1), (6.4) and (6.5) that
A1¢ = 9A;.

By the same way we can obtain

A =vA;, A0 =0A,.
By means of Theorem K-P we complete the proof. 0

In the previous paper ([15]) we have already proved the following
result without the assumption

REMARK. Let M be as in Theorem 6.1 and let the normal vector field
N; be parallel with respect to the normal connection. If the following
equalities

'V¢é/R=0, 'V,/R=0, 'V/R=0,

are established, then 7#=1(M) is locally a product of M; x Ms where M;
and M, belong to some (4n; + 3)- and (4n, + 3)-dimensional spheres.
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