Journal of the Society of Korea Industrial and Systems Engineering
Vol, 26, No. 3, pp.74—78, September 2003.

Study on Developing a Flight Data Visualization
Dr. Jae-Sug Ki

Visual System Research Dep. Of KCEI
Seoul, Korea

[dlo]elQ] 7irleloll et A+
7) A 4
Aol solofo] FAAILR A7
£ ARAAE oY HoHe] 4G A AR ALE A% SLEde) DA R 235 33

9]
oz MA kg Alsh FAoE ANRT A 2ol HyA
NBHOIN ATENO|Z ANZOE A8} Aske ARE BN 5 YE

AgAe] 075 H8F £ AT FA4S B BEI At

1. Introduction

Data analysis is one of the main processes in develop-
ment and training of flight vehicles. Several flight data vis-
ualization tools are already developed [6, 7, 8]. However,
target users of these tools make it extremely hard to meet
all requirements. While flight school teachers and students
want to be familiar with flying environment and the air-
craft itself; engineers and scientists like to analyze and
post-process flight data to better understand the behaviour
of the aircraft.

There are many works that try to solve information shar-
ing between applications [4, 5] : Building an internal data
structure, providing necessary tools to interact with the in-
formation and managing all applications. While they aim to
handle communications for independent information manage-
ment systems, a similar approach may be implemented in
flight visualization data systems :

Instead of focusing the functionality, focusing the appli-
cation management and provide a framework which will
manage all other tools (in our case plugins). The result
will be a set of development libraries and sample applica-
tions which other users can develop their own applications.

This development process is not limited with provided con-

figuration tools, it uses all functionality with the program-
ming extensions.

2. General Requirements

How to effectively manage large terrain models and data
sets in a -a Source

Most of the time data is provided in pre-recorded data
files. Special hardware that's installed on the aircraft can re-
cord required data in specific formats. These files can be
loaded in to flight data visualization tools and used as data
sources. It is also possible to use networking to display re-
al-time data. This feature extends the capabilities of the tool
to use with flight simulations or in flight test environments
where radars are used to collect real time flight data. In both
cases data formats (for network packages or pre-recorded
files) might be specific for applications or hardware which is
used to collect the data.

2.2 Data Processing

Incoming data is named as raw data since there is

no processing after the data collection phase. Even data

H|% C{O|E{Q] JIA[RLOY TSt 012 s

collection hardware may implement some processing, we
will still use this term for all data which is just arrived to
the flight data visualization system.

Most of the cases, users require simple processing such
as unit and/or coordinate conversions. Visual display op-
tions may require higher frame rates than incoming data.
This can be assured with data interpolation. For example if
3D display is available in the system it will require posi-
tion data around 60Hz to have a smooth view. If incoming
data is lower than this rate, interpolation should be used to
provide extra data to the 3D display. Another processing
might be calculation of new values which we will call as
virtual values. Virtual values are not available in raw data
but can be calculated using one or more variables.

Event generation or condition checks are also another
problem to solve. Most of the time, users want audiovisual
warnings according to conditions such as low speed, high
engine temperature etc. A flight data visualization tool may
need to have a mechanism to define the conditions and ex-
ecute them during the mission time.

2.3 Visual Displays

3D display features are one of the essentials of all data
visualization tools. For a large range of users this is a
good way to understand how flight conditions change dur-
ing the simulation. Moving map displays also help users to
understand how aircraft interacts with the environment and
how flight path changes during the flight. Figure 1 shows
sample shots for both displays.

<Figure 1> 3D and Moving Map view of Missile Visuali-
zation System

For simple usages, both displays have just visual require-
ments and not used for scientific measurements. But still

users may require additional features to display more accu-
rate data such as Head Up Display (HUD) on 3D display.
Common approach is to provide generic displays for all
kind of vehicles. This might be enough for some applica-
tions but not for all of them.

2.4 Scientific Displays

After all data visualization is for data analysis. Therefore
all visualization tools should support scientific displays
somehow. Common displays are plots, watch variables and
gauges, Figure 2 shows sample images for these displays.

(s vawe U
HHEarge UUUUUUL e
Arimuta N AMAAnc M~giee
Elevation 0.00000C Dages

<Figure 2> Plot, watch and gauge display from Missile
Visualization System

For real time data visualization it is better to use simple
format display which allow users to easily understand the
data changes in short time. But for further analysis users
may need more complex displays to compare different data
values on the same plot using different symbols or mark-
ings on the display area. Even just for the plot displays it
is not easy to match the wide range requirements within a
single application.

Scientific displays should be able to display data in re-
al-time performance and they should have extra function-
ality for after flight data analyzing sections.

76 J| XY A

3. A Previous Implementation

Missile Visualization System is a set of applications devel-
oped by KCEI! to use in missile testing. System receives re-
al-time data from network and perform data processing, pro-
vides 2D and 3D displays and data recording mechanism.
Figure 3 shows the structural layout of the system.

There are three applications working together to meet the
system requirements : 2D User Interface is responsible for
configuration management and simulation control (start/stop/
playback) as well as 2D data displays. Simulation Engine is
responsible to receive data packages from network and con-
vert it to internal data structure. And last, 3D viewer man-
ages the 3D display according the configuration.

Proper 20 User iterisce Layer

Process Cortrol 20 Disptay Tools

Fies A N
Tontgurnion Toss

1D Mewer

L

Shared Memary

% % Data Sen Engine

Configuration

—s Command

<Figure 3> Structural layout of missile visualization system.

Those three are standalone applications and work on the
same computer. Data communication is based on shared
memory. Besides each application sends and receives com-
mand messages to maintain the synchronization between
processes.

An API is developed for the system which provides neces-
sary functionality to interact with configuration files, shared
memory and internal data structures. It also allows users to

develop their own applications which can interact with the
existing ones to perform extra functionality such as compli-
cated map displays or plots. It is also possible to develop
logging or post-analysis applications using the APL

However current system has limitations such as shared
memory usage or messaging structure. Currently all applica-
tions should work on the same computer. But it is possible
to develop some client/server applications which can handle
networking with some additional work.

Although system is extendible with additional applications,
it is not possible to extend the functionality for the existing
applications. In other words, instead of replacing existing plot
display, one should write a new application which provides
a new plot display.

4. New Design Layout

Extendibility is the key point for our design. Due to the
wide range of requirements it is not easy to meet all within
a single application. Instead, it is possible to provide a set of
tools and a framework which users and other developers can
extend the functionality as they require.

The concept of Flight Data Visualization will draw the
outlines of the framework. Simple extensions will be devel-
oped to prove the design.

Application framework will be based on modular archi-
tecture with Mathwork's
Solutions' VisSim3). Although both applications are intended

similar Simulink2) or Visual
to simulate/solve dynamic systems, their structure may be a
start point for our design. A similar approach is used by
SimAuthor's FlightViz4) but in a limited manner.
Application framework will provide the base communica-
tion between the plugins and manage the simulation. Plugins
will provide the main functionality such as data importing,
data processing, recording or data display. The unit which
performs a particular job in the simulation will be called as
a Block. Each plugin may provide several blocks to join the
simulation. Application framework is responsible to manage
these blocks and connections (channels) between the blocks.
An application programming library named “Processing

1) KCEI is a Korean company focused on 3D computer graphics and simulation systems : www.kcei.com
2) Simulink is a trademark of Mathworks which is used to design and simulate continuous- and discrete-time systems : www.mathworks.com
3) VisSim is a trademark of Visual Solutions Inc. which is used for the modeling and simulation of complex continuous nonlinear

dynamic systems . www.vissim.com

4) FlightViz is a trademark of SimAuthor Inc. A visualization and communication system, which instantly creates real-time, intereactive,
fidelity graphical depictions of flight and simulator data : www.simauthor.com

HI% GIO|E{Q] JtA[Lto) ot 77

Blocks”(pbLib)®) will be used maintain the basic structure.
With this Simulink like structure, users may easily customize
their simulation system for their needs. The pbLib provides
essential blocks such as simple mathematical operations and
some more complex blocks with a “MathPaser” (Mathemat-
ical expression solver)b).

A simple data visualization system consist of two block
groups : Data Sources and Data Displays. An user developed
data source block can load the flight data file and create its
own data plugs to output necessary values. Each data display
block receives the data from its own consumer plugs (i.e.
Time and altitude plugs for a time-altitude plot). It is also
possible to add data processing blocks to perform unit con-
versions (i.e. Feet to meter conversion for altitude). Figure 4
shows a basic diagram for this case.

i L Time|_)
Loader Time Time-Aftitude
: 1 40| Plat
AIlrFude feet Faetto Meter meter Attude
|Latitude
|Longtitude

<Figure 4> Basic block layout.

While block structure serves as the backbone of the simu-
lation, it has nothing to do with user interface which in this
case essential to draw the plot. Actually block structure is
designed as a command line tool which is fully configurable
via APL. Therefore another programming library will be de-
veloped to serve as graphical user interface (GUI). QT? is
chosen as user interface library due to its easy to understand
and maintain structure and cross platform nature.

Each plugin which performs user interface functionality
will attach the main application and creates its own menus,
windows and handles user commands. An API to interact
with pbLib will be developed based on QT. Also essential
plugins will be developed such as Block Manager to
add/remove blocks, connect them each other and change ex-
ecution order. Main application is responsible for the man-

agement of plugins and handles the communication within all

plugins. It assures that each plugin will get user request and
can perform their response functionality. It also works as re-
al-time controller to manage the user commands such as
play, stop, forward, rewind etc.

5. Conclusion

We believe that evolving needs for flight data visualization
systems require dynamic and extendible applications. In other
words, development process should never end. Configurable
interfaces may allow users to customize the functionality but
still developers has to work for most complex cases. A tool-
set which contains re-usable components for display and data
interaction will reduce the development time for further de-
velopment in flight data visualization systems.

Since all functionality is provided via plugins, it is possible
fo extent current applications or construct new ones according
to user requirements. Custom data recorders and exporters
may be added to the system to export data for third part ap-
plications such as spread sheets and plot drawing tools.
Custom processing blocks may be added to the existing sys-
tem such as the one with built in scripting support. Or ex-
tend the capabilities to work on distributed systems.

References

[1] Chris, Mitchell. & Walter, Gekelman. Real-time physics
data-visualization system using Performer. Coputers in
Physc, Vol. 12, No. 4, July/August 1998, pp 371-379

[2] Dennig, Clark, Nicholas., Korthuis, David.,
Prince, Michale. & Kim, Hyun-Soo. Bid Document :

James.,

F/A-18 Memory unit data visualization project.
http : //wonderwoman.cse.msu.edu

[3] Ronald, L. Small, D. Lakowske.,
Bresee. & Gerry, Callejo. A future direction in pilot

Stephen, Jerry,
training. Specific Applications in Pilot Training, Sep-
tember 1999, pp 281-285.

[4] Roth, S. A., Lucas, P., Senn, J. A., Gomberg, C. C,
Burks, M. B., Stroffolino, P., J., Kolojejchick, J. A, &
Dunmire, C. “Visage : A user interface environment for
exploring information.” Proceedings of Information Visuali-
zation, IEEE, San Francisco, October 1996, pp. 3-12.

5) pbLib is an extendible library which allows users to construct their systems with blocks. More info can be found at www.machsim.com
6) MathParser is an extendible mathematical expression parser which parses and solves expressions in text format. More info can be

found at www.machsim.com

7y QT is Trolltech's object oriented, cross-platform, C++ GUI development kit. More info can be found at www.trolltech.com

78 I\ X A

[5] Rouff, Christopher. & Robbert, Mary Ann. Developing
the cooperative mission development environment. ACM
International Conference on Supporting Group Work,
Phoenix, AZ, November 1997

[6] SimAuthors Inc., FlightViz, www .simauthor.com

[7] Spirent Systems, GRAF-VISION Flight Data Animator,
www.spirent-systems.com

[8] SystemWare Incorporated., FDAS, www.sysware.com

