참고문헌
- Physiologia Plantrum v.89 Almansa,M.S.;L.A.del Rio;C.Alcaraz;F.Sevilla
- Plant physiol. v.77 Biosynthesis and antioxidant function of glutathione in plants Alscher,R.G. https://doi.org/10.1111/j.1399-3054.1989.tb05667.x
- Plant physiol. Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants Asada,K. https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
- Causes of photooxidative stress in plant and amelioration of defense system Production and action of active oxygen species in photosynthetic tissue Asada,K.;C.H.Foyer(ed.);P.M.Mullineaux(ed.)
- The role of ascorbate peroxidase and monodehydroascorbate reductase in H₂O₂scavenging in plants Asada,K.
- Annu Rev Plant physiol. Plant Mol. Biol. v.50 The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons Asada,K. https://doi.org/10.1146/annurev.arplant.50.1.601
- Prog. Bot. v.60 The costs and benefits of oxygen for photosynthesizing plant cells Baier,M.;K.J.Dietz
- Plant Cell Physiol. v.35 Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress Baisak,R.;D.Rana;P.B.B.Acharya;M.Kar
- Acta Physiol. Plant. v.19 Oxidative stress in plants Bartosz,G. https://doi.org/10.1007/s11738-997-0022-9
- Anal. Biochem. v.44 Superoxide dismutase: Improved assay and an assay applicable to acrylamide gels Beauchamp,C.;I.Fridovich https://doi.org/10.1016/0003-2697(71)90370-8
- Anal. Biochem. v.161 Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions Beyer,W.F.;I.Fridovich https://doi.org/10.1016/0003-2697(87)90489-1
- Annu. Rev. Plant physiol. Plant Mol Biol. v.43 Superoxide dismutase and stress tolerance Bower,C.;M.Van Montagu;D.Inze
- Plant physiol. v.110 Ascorbate peroxidase: a prominent membrane protein in oil seed glyoxysomes Bunkelmann,J.R.;K.N.Trelease https://doi.org/10.1104/pp.110.2.589
- Plant physiol. v.98 Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves Cakmak,I.;H.Marschner https://doi.org/10.1104/pp.98.4.1222
- Biochemistry v.38 Examination of the nikel site structure mechanism in Streptomyces seoulensis superoxide dismutase Choudhury,S.B.;J.W.Lee;G.Davidson;Y.I.Yim;K.Bose;M.L.Sharma;S.O.Kang;D.E.Cabelli;M.J.Maroney https://doi.org/10.1021/bi982537j
- nov. Int. J. Syst. Bacteria. v.47 Streptomyces seoulensis sp Chun,J.;H.D.Youn;Y.I.Yim;H.Lee;M.Y.Kim;Y.C.Hah;S.O.Kang https://doi.org/10.1099/00207713-47-2-492
- Plant Sci. v.135 Antioxidant responses of rice seddlings to salinity to salinity stress Dionisio-Sese,M.L.;S.Tobita https://doi.org/10.1016/S0168-9452(98)00025-9
- Ann. Bot. v.42 Salt tolerance in halophyte, Suaeda maritima L. Dunn. : The influence of salinity of culture solution on the content of various organic compounds Flower,T.J.;J.L.Hall
- Planta v.133 The presence of glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism Foyer,C.H.;B.Halliwell https://doi.org/10.1007/BF00386001
- Plant Cell Environ v.17 Protection against oxygen radicals: an important defense mechanism studied in transgenic plants Foyer,C.H.;P.Descourvieres;K.J.Kunert https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
- Plant physiol. v.109 Overexpression of glutathione reductase but not glutathione synthetase leads to increase in antioxidant capacity and improved photosynthesis in poplar (Populus tremula x P. alba) trees Foyer,C.H.;N.Souriau;S.Perret;M.Lelandais;K.J.Kunert;C.Pruvost;L.Jouanin https://doi.org/10.1104/pp.109.3.1047
- Oxidative stress and the molecular biology of antioxidant defense Foyer,C.H.
- Science v.201 The biology of oxygen radicals Fridovich,I. https://doi.org/10.1126/science.210504
- Adv Enzymol Relat Areas Mol. Biol. v.58 Superoxie dismutases Fridovich,I.
- Plant Physiol. v.112 Gosset D.R.;S.W.Banks;E.P.Millhollon;M.C.Lucas
- Crop Sci. v.34 Antioxidant responses to NaCl stress in salt-tolerant and salt sensitive cultivars of cotton Gosset D.R.;E.P.Millhollon;M.C.Lucas https://doi.org/10.2135/cropsci1994.0011183X003400030020x
- Annu. Rev. Plant Physiol v.31 Mechanism of salt tolerance in nonhalophytes Greenway;Munns https://doi.org/10.1146/annurev.pp.31.060180.001053
- Plant Physiol. v.97 Comparative physiological evidence that β -alanine betaine and choline-o-sulfate act as compatible osmolytes in holophytic Limonium species Hanson,A.D.;B.Rathinasabapathi;B.Chamberlin;D.A.Gage https://doi.org/10.1104/pp.97.3.1199
- Plant physiol. v.89 Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria Hernandez,J.A.;F.J.Corpas;M.Gomez;L.A.DelRio;F.Sevilla https://doi.org/10.1111/j.1399-3054.1993.tb01792.x
- Trends Plant Sci. v.3 Improving stress tolerance in plants by gene transfer Holmberg,N.;L.Bulow https://doi.org/10.1016/S1360-1385(97)01163-1
- Science. v.240 DNA damage and oxygen radical toxicity Imlay,J.A.;S.Linn https://doi.org/10.1126/science.3287616
- Plant Physiol. v.114 Evience for the presence of the ascorbateglutathione cycle in mitochondria and peroxisomes of pea leaves Jimenez,A.;J.A.Hernandez;L.A.del Rio;F.Sevilla https://doi.org/10.1093/oxfordjournals.pcp.a029285
- Plant Cell Physiol. v.39 Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach Ishikawa,T.;K.Yoshimura;K.Sakai;T.Takeda;S.Shigeoka https://doi.org/10.1093/oxfordjournals.pcp.a029285
- Biophys. Acta. v.440 The effect of hydrogen peroxide on CO2 fixation of isolated intact chloroplast Kaiser,W.
- Bot. Acta v.109 Significance of thioldisulphide exchange in resting stages of plant development Kranner,I.;D.Grill https://doi.org/10.1111/j.1438-8677.1996.tb00864.x
- Physiological plant ecology Larcher,W.
- Cell v.79 H₂O₂ from the oxidative burst orchestrates the plant hypersensitive disease resistance response Levine,A.;R.Tenhaken;R.Dixon;C.Lamb https://doi.org/10.1016/0092-8674(94)90544-4
- Plant physiol. v.97 Ascorbate peroxidase activity, not the mRNA level, is enhanced in salt-stressed Raphanus sativas plants Lopez,F.;G.Vansuyt;F.Case-Delbart;P.Fourcroy https://doi.org/10.1111/j.1399-3054.1996.tb00472.x
- J. Biol. Chem. v.193 Protein measurement with the Folin phenol reagent Lowry,O.H.;N.J.Rosenbrough;A.L.Farr;H.J.Randall
- Plant Physiol. v.84 Sodium, potassium, chloride and betaine concentrations in isolated vacuoles from salt-grown Atriplex gmelini leaves Matoh,T.;J.Watanabe;E.Takahashi https://doi.org/10.1104/pp.84.1.173
- Plant physiol. v.103 Superoxide dismutase enhances tolerance of freezing stess in transgenic alfalfa(Medocago sativa L.) Mckersie,B.D.;Y.Chen;M.De Beus;S.R.Bowley;C.Bowler;D.Inze https://doi.org/10.1104/pp.103.4.1155
- Plant physiol. v.111 Water-deficit toleance and field performance of transgenic alfalfa overexpressing superoxide dismutase Mckersie,B.D.;S.R.Bowley;E.Harjanto;O.Leprince
- J. Plant physiol. v.155 Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations Meneguzzo,F.;Navari-Izzo https://doi.org/10.1016/S0176-1617(99)80019-4
- Plant Cell Physiol. v.22 Hyrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts Nakano,Y.;K.Asada
- Plant Physiol. v.100 Noctor,G.;A.C.M.Arisi;L.Jouanin;M.H.Valadier;Y.Roux;C.H. Foyer https://doi.org/10.1111/j.1399-3054.1997.tb04781.x
- Plant physiol. v.112 Synthesis of glutathione in leaves of transgenic popular(Populus tremula x P. alba) over-expressing λ -glutamyl cystein synthetase Noctor,G.;M.Strohm;L.Jouanin;K.J.Kunert;C.H.Foyer;H.Rennenberg
- Free Radical Res. Commun. v.8 Plants under drought stress generate activated oxygen Prise A.H.;N.M.Atherton;G.A.F.Hendry https://doi.org/10.3109/10715768909087973
- Flora. v.180 Salt secretion in some Chenopodium species Reimann,C.;S.W.Breckle
- Plant Physiol. v.68 Salin,M.L.;S.M.Bridges https://doi.org/10.1016/S0168-9452(00)00406-4
- Plant Physiol. v.69 Salin,M.L.;S.M.Bridges https://doi.org/10.1104/pp.69.1.161
- Plant Science v.160 Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes Rout,N.P.;B.P.Shaw https://doi.org/10.1104/pp.69.1.161
- Oxy Radicals and Their Scavenger Systems Salin,M.L.;D.S.Lyon
- Oxidative stress and the molecular biology of antioxiant defenses Molecular genetics of superoxide dismutase in plants Scandalios,J.G.;Scandalios,J.G.(ed.)
- Int. Rev. Cytol. v.165 Salt tolerance in plants and microorganisms: toxicity targets and defense responses Serrano,R. https://doi.org/10.1016/S0074-7696(08)62219-6
- Crit rev. Plant Sci. v.13 Microbial models and salt tolerance in plants Serrano,R.;R.Gaxiola https://doi.org/10.1080/713608057
- J. Exp. Bot. v.39 Drought influences the activity of the enzymes of the chloroplast hydrogen peroxide scavenging system Smironff,N.;S.V.Colombe https://doi.org/10.1093/jxb/39.8.1097
- Photosynth. Res. v.39 UV-B damage and protection at the molecular level in plants Strid,A.;W.S.Chow;J.M.Anderson https://doi.org/10.1007/BF00014600
- Can. J. Plant Sci. v.78 Physiological responses of plant to salinity: a review Volkmar,K.M.;Y.Hu;H.Steppuhn https://doi.org/10.4141/P97-020
- Plant and biochemistry of drought resistance in Plnat. Wyn Jones,R.G.;R.Storey;Paleg,L.G.(ed.);D.Aspinall (ed.)