DOI QR코드

DOI QR Code

Inhibition of pRB Phosphorylation and Induction of p21WAF1/CIP1 Occur During cAMP-induced Growth Arrest in Human Neuroblastoma Cells

인체 신경아세포종에서 cAMP 처리에 의한 pRB의 인산화 억제 및 p21WAF1/CIP1의 유도

  • Park, Yung-Hyun (Department of Biochemistry, Dong-Eui University College of Oriental Medicine and Research Institute of Oriental Medicine) ;
  • Lee, Sang-Hyeon (Department of Bioscience & Biotechnology, Silla University)
  • Published : 2003.10.01

Abstract

To develop a new approach to the treatment of neuroblastoma cells we evaluated the effect of cAMP on the Ewing's sarcoma cell line CHP-100. We observed that the proliferation-inhibitory effect of cAMP analogs was due to cell cycle arrest and induction of apoptosis, which was confirmed by observing the morphological changes and DNA fragmentation. DNA flow cytometric analysis revealed that cAMP arrested the cell cycle progression at the G1 phase, which effects were associated with inhibition of phosphorylation of retinoblastoma protein (pRB) and enhanced binding of pRB and the transcription factor E2F-1. cAMP also suppressed the cyclin-dependent kinase (Cdk) 2 and cyclin E-associated kinase activity without changes of their expressions. Furthermore, cAMP induced the levels of Cdk inhibitor $p21^{WAF1/CIP1$ expression and p21 proteins induced by cAMP were associated with Cdk2. Overall, our results identify a combined mechanism involving the inhibition of pRB phosphorylation and induction of p21 as targets for cAMP, and this may explain some of its anti-cancer effects.

인체 신경아세포종의 성장에 미치는 cAMP의 영향을 조사하기 위하여 Ewing's sarcoma 세포주인 CHP-100 세포에 dibutyry1-cAMP 및 8-bromo-cAMP를 처리하였다. 두 종류의 cAMP analog처리 시간 증가에 따라 CHP-100 세포의 증식이 처리 시간 의존적으로 억제되었으며, 이는 핵의 형태변화 및 DNA 단편화 현상을 수반한 apoptosis 유발과 연관성이 있었다. 또한 DNA flow cytometry 분석결과 cAMP는 세포주기 G1기 특이적 arrest를 유발하였다. cAMP 처리에 의하여 retinoblastoma 단백질(pRB)의 인산화가 억제되었으며, 전사조절인자 E2F-1과의 결합이 증대되었다. cAMP는 cyclin-dependent kinase (Cdk) 2 및 cyclin E 단백질의 발현변화에는 영향을 미치지 않았으나, 그들의 kinase 활성은 처리시간 의존적으로 매우 감소되었다. 또한 cAMP 처리에 의하여 Cdk inhibitor인 $p21^{WAF1/CIP1$의 발현이 증가되었으며, 증가된 p21 단백질은 Cdk2와 강한 결합을 형성하고 있었다. 이상의 결과에서 cAMP의 암세포 성장억제 효과에 pRB 및 p21이 매우 중요한 역할을 함을 알 수 있었다.

Keywords

References

  1. JAMA v.273 Molecular assays or chromosomal tanslocations in the diagnosis of pediatric soft tissue sarcomas Barr,J.G.;J.Chatten;C.M.D'Cruz;A.E.Wilson;L.E.Nauta;L.M.Nycum;J.A.Biegel;R.B.Womer https://doi.org/10.1001/jama.273.7.553
  2. J. Biol. Chem. v.272 Regulation of cyclin D1 by calpain protease Choi,Y.H.;S.J.Lee;P.Nguyen;J.S.Jang;J.Lee;M.L.Wu;E.Takano;M.Maki;P.A.Henkart;J.B.Trepel https://doi.org/10.1074/jbc.272.45.28479
  3. Jpn. J. Cancer. Res. v.91 p53-indepenent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells Choi,Y.H.;W.H.Lee;K.Y.Park;L.Zhang https://doi.org/10.1111/j.1349-7006.2000.tb00928.x
  4. Genes Dev. v.9 E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity DeGregori,J.;G.Leone;K.Ohtani;A.Miron;J.R.Nevins https://doi.org/10.1101/gad.9.23.2873
  5. Cell v.75 WAF1, a potential mediator of p53 suppression El-Deiry,W.S.;T.Tokino;V.E.Velculesco;D.B.Levy;R.Parsons;J.M.Trent;D.Lin;E.W.Mercer;K.W.Kinzler;B.Vogelstain https://doi.org/10.1016/0092-8674(93)90500-P
  6. Curr. Opin. Cell Biol. v.6 Cdk inhibitors: on the theshold of checkpoints and development Elledge,S.J.;J.W.Harper https://doi.org/10.1016/0955-0674(94)90055-8
  7. Nature v.411 Proliferation, cell cycle and apoptosis in cancer Evan,G.I.;K.H.Vousden https://doi.org/10.1038/35077213
  8. Cell Biol. Int. v.17 Multiple pathways to apoptosis Evans,V.G. https://doi.org/10.1006/cbir.1993.1087
  9. Cell v.66 Evience that the G1-S and G2-M transitions are controlled by diferent cdc2 proteins in higher eukaryotes Fang,F.;J.W.Newport https://doi.org/10.1016/0092-8674(91)90117-H
  10. Ann. Oncol. v.8 Long-term survival in an adult metastaic renal peipheral primtive neuroectoderman tumor (PPNET) with multimodality treatment including high-dose chemotherapy Fontaine,C.;R.Schots;J.Braeckman;A.Goossens;G.Soete;J.De Greve https://doi.org/10.1023/A:1008271903643
  11. Ann. Oncol. v.10 Factors associated with tumor volume and primary metastases in Ewing tumors: results from the (EI)CESS studies Hense,H.W.;S.Ahrens;M.Paulussen;M.Lehnert;H.Jurgens https://doi.org/10.1023/A:1008357018737
  12. Mol. Cell. Biol. v.14 Regulation of cyclin D-dependent kinase 4 (cdk4) by cdk4-activating kinase Kato,J.Y.;M.Matsuoka;D.K.Strom;C.J.Sherr https://doi.org/10.1128/MCB.14.4.2713
  13. Anticancer Res. v.17 Effect of dibutyry1 cyclic AMP on the cyclin-dependent kinase inhibitor p27Kip1 in the human hepatoma cells PLC/PRF/5 Kikukawa,M.;Y.Okamoto;H.Fukui;H.Nakano
  14. Int. J. Cancer v.293 8-Cl-cAMP induces cell cycle-specific apoptosis in human cancer cells Kim,S.N.;Y.H.Ahn;S.G.Kim;S.D.Park;Y.S.Cho-Chung;S.H.Hong
  15. Curr. Opin. Oncol. v.11 The Ewing family of tumors and the search for the Achilles' heel Kovar,H.;D.Aryee;A.Zoubek https://doi.org/10.1097/00001622-199907000-00007
  16. Cancer Res. v.47 Neuroectoderm-associated antigens on Ewing's sarcoma cell lines Lipinski,M.;K.Braham;I.Philip;J.Wiels;T.Philip;C.Goridis;G.M.Lenoir;T.Tursz
  17. Cell v.71 Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins Matsushime,H.;M.E.Ewen;D.K.Strom;J.Y.Kato;S.K.Hanks;M.F.Roussel;C.J.Sherr https://doi.org/10.1016/0092-8674(92)90360-O
  18. Mol. Cell. Biol. v.14 Identification of G1 kinase activity for cdk6, a novel cyclin D partner Meyerson,M.;E.Harlow
  19. Oncologist v.6 Molecular genetics ofj neuroblastoma and the implications for clinical management: a review of the MSKCC experience Mora,J.;W.L.Gerald;J.Qin;N.K.Cheung https://doi.org/10.1634/theoncologist.6-3-263
  20. Nature v.374 Principles of CDK regulation Morgan,D.O. https://doi.org/10.1038/374131a0
  21. Eur. J. Immunol. v.30 cAMP-mediated growth inhibition of lymphoid cells in G1: rapid down-regulation of cyclin D3 at the level of translation Naderi,S.;K.B.Gutzkow;J.Christoffersen;E.B.Smeland;H.K.Blomhoff https://doi.org/10.1002/1521-4141(200006)30:6<1757::AID-IMMU1757>3.0.CO;2-N
  22. EMBO J. v.11 Cyclin A is required at two points in the human cell cycle Pagano,M.;R.Pepperkok;F.Verde;W.Ansorge;G.Draetta
  23. Mol. Endocrinol. v.15 New signaling pathways for hormones and cyclic adenosine 3',5'-monophosphate action in endocrine cells Richards,J.S. https://doi.org/10.1210/me.15.2.209
  24. Science v.274 Cancer cell cycles Sherr,C.J. https://doi.org/10.1126/science.274.5293.1672
  25. Crit. Rev. Biochem. Mol. Biol. v.31 Activity of the retinoblastoma family proteins, pRB, p107, and p130, during cellular proliferation and differentiation Sidle,A.;C.Palaty;P.Dirks;O.Wiggan;M.Kiess;R.M.Gill;A.K.Wong;P.A.Hamel https://doi.org/10.3109/10409239609106585
  26. Front Biosci. v.5 Specificity in the cAMP/PKA signaling pathway, differential expression, regulation, and subcellular localization of subunits of PKA Skalhegg,B.S.;K.Tasken https://doi.org/10.2741/Skalhegg
  27. Lab. Invest. v.79 EWS/ETS fusion genes induce epithelial and neuroectodermal differentiation in NIH 3T3 fibroblasts Teitell,M.A.;A.D.Thompson;P.H.Sorensen;H.Shimada;T.J.Triche;C.T.Denny
  28. Oncogene v.18 Divergent Ewing's sarcoma EWS/ETS fusions confer a common tumorigenic phenotype on NIH3T3 cells Thompson,A.D.;M.A.Teitell;A.Arvand;C.T.Denny https://doi.org/10.1038/sj.onc.1202928
  29. Perspect Pediatr. Pathol. v.6 Peripheral primitive neuroectodermal tumors. Diagnosis, classification, and prognosis Tsokos,M.
  30. Endocrinology v.136 Cyclic adenosine monophosphate (cAMP) analogs 8-C1- and 8-NH2-cAMP induce cell death independently of cAMP kinase-mediated inhibition of the G1/S transition in mammary carcinoma cells (MCF-7) Vintermyr,O.K.;R.Boe;O.T.Brustugun;E.Maronde;A.Aakvaag;S.O.Doskeland https://doi.org/10.1210/en.136.6.2513
  31. Curr. Opin. Oncol. v.12 Ewing sacoma family of tumors West,D.C. https://doi.org/10.1097/00001622-200007000-00008
  32. Nature v.366 p21 is a universal inhibitor of cyclin kinases Xiong,Y.;G.Hannon;H.Zhang;D.Casso;R.Kobayashi;D.Beach https://doi.org/10.1038/366701a0