Abstract
In recent years automatic image indexing and retrieval have been increasingly studied. However, content-based retrieval techniques for general images are still inadequate for many purposes. The novelty and originality of this thesis are the definition and use of a spatial information model as a contribution to the accuracy and efficiency of image search. In addition, the model is applied to represent color and shape image contents as a vector using the method of image features extraction, which was inspired by the previous work on the study of human visual perception. The indexing scheme using the color, shape and spatial model shows the potential of being applied with the well-developed algorithms of features extraction and image search, like ranking operations. To conclude, user can retrieved more similar images with high precision and fast speed using the proposed system.
대량의 일반 이미지 집합에서 사용자가 원하는 이미지를 효율적으로 찾아내는 것이 내용기반 이미지 검색 연구의 주된 목적이나 특정한 분야에 속하지 않은 일반 이미지를 대상으로 하는 연구는 아직까지 만족스럽지 못한 실정이다. 이 논문에서는 이미지의 색상과 형태의 특징 정보들을 추출하여 자동으로 색인하고 검색하는 시스템을 제안하였다. 특징 추출은 인간의 이미지 인식 과정에 기반하여 전체적인 정보와 세부적인 정보로 구분하여 수행하였다. 추출된 특징 정보들은 전역 칼라, 부분 영역 칼라, 전역 형태, 부분 영역 형태 정보로 구분하였다. 실험 결과 제안한 방법은 기존의 방법과 비슷한 시간 내에 비교적 높은 Precision과 Retail로 이미지를 검색함을 알 수 있었다.