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Analysis of Leaky Modes on Circular Dielectric Rods using
Davidenko's Method
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Abstract

Leaky modes on a circular dielectric rod are investigated from the precisely determined normalized complex

propagation constants using Davidenko's complex root finding technique. Below the cutoff frequency of the guided

mode, distinct frequency regions that have unique properties are observed, such as nonphysical region, antenna

mode region, reactive mode region, and spectral gap region.
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1. Introduction

A circular dielectric rod is one of the simplest
structures that can be used as either a waveguide or
an antenna. Above the guided mode cutoff, the rod
operates as a waveguide and its modal characteristics
have been studied extensively for a long time[”'m,
and even nowadays”. Below the cutoff frequency of
the guided modes, in radiation mode regionm, the
propagation constants become complex and make up
another class of discrete sets of eigenvalue solutions

which represent leaky modes. The major feature of

the leaky modes is that the amplitude of the waves
is growing along the transverse direction, so it is
called the improper waves'. The leaky mode dis-
persion characteristics of the circular dielectric rod
are little known, in spite of that its characteristic
equation has been revealed long time ago™®. In 1969,
Ambak determined the complex propagation con-
stants of the leaky modes of the circular dielectric
rod and demonstrated the existence of the leaky
modes in a circular dielectric rod by applying an
approximate analysis to the characteristic equationm.
However, it is focused on finding the complex
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propagation constants and more detailed discussions
about the leaky modes of the dielectric rod were not
available at that time.

In this paper, we investigated the leaky modes of
the dielectric rod in more detail such as the
nonphysical mode, the antenna mode, the reactive
mode, and the spectral gap for the lowest several
TM modes from the precisely determined normalized
complex propagation constants by Davidenko's me-
thod. The effects of the two design parameters, the
radius of the dielectric rod and the dielectric constant
of the rod material, to the dispersion characteristics

are also considered.

II. Characteristic Equation

Fig. 1 shows the structure of the circular dielectric
rod employed in this work. The axial component of
the electric and the magnetic fields can be expressed
as follows.

E..= A, J.(kavexplilwt—mb—yz)] (1)
H. = B, Jn(kaMexplilwt—mb—r2)]  (2)
Ey= CpuHP (kynexplilwt—mo— 2] (3)
H = D, HP (k;y)explilwt— md— )]  (4)

7, and H are the mth order Bessel and Hankel

functions of the second kind; m is the azimuthal

eigenvalue; A,.,, Buw Cm, and D, are complex
constants corresponding to the modes; %, and k&, are

the complex transverse propagation constants in the
dielectric region and the free space region,
respectively, and are related with the material con-
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Fig. 1. Circular dielectric rod.

stants and the complex axial propagation constants as

K= Bpnen— 7= Blunen— P)i=d N5

Here, %, is the free space wave number, and 7y is
the normalized complex axial propagation constant,
which is composed of the normalized phase and the
attenuation constants, i.e.,
T ¥ - Brja _ B ,.a _p, —
= = = + =g+ 6
=%, 7y b Ty =8 ja (6)
Substituting (6) into (5) for the complex waves

(‘@ +0), we have the following relationships”’

(Re{ED? — (Im{k)? = B ei— B+ a)
Relk}Imik)= — K, ap @)

where Re (£} and Im {&) are the real and the
imaginary parts of the transverse propagation con-
stants, respectively. In addition, the leaky waves
(Here, forward leaky waves) are the complex waves
having the properties of >0, a<0, Re {k}>0,
and Im {k}>0.

Applying the boundary conditions at the radius of
the circular dielectric rod r=a to the axial and the
azimuthal components of the fields in the dielectric
and the free space region yields the 4 X4 coefficient
matrix, and the determinant of the matrix should be
zero to avoid nontrivial solutions. This is the
characteristic equation of the circular dielectric rod
and is expressed as follows.

P - QR_= 0 8)
Ptk )

e In (k) ey HEZ (ka)
Q= kg Tndsa) ky HP(ksa) (10)

Hod ]m’(kda) _ﬁ H,(nZ)(k/lZ) (11)
kg Jn(kqa) ki H (kja)

R=

For m=0, the characteristic equation (&) is
decoupled to the characteristic equation of the TMyn
mode (@=0), and the TEy, mode (R=0), respec-
tively. As seen in (10) and (11), the characteristic
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equations of the TMyp, and the TEew mode are
identical except for the material constants and the
hybrid mode such as the HEn, and EHn, modes are
linear combinations of each transverse mode, thus,
the TMy, mode represents the most general feature of
the circular dielectric rod in our case. So, we focus
on our attention to the characteristics of the TM,
modes. The characteristic equation of the TMgy, mode
can be expressed as follows.

Q= € Ji{ksa) €y HI(Z)(kfa) =0 (12)

ke Jo(kaa) ks HP(ksa)

[I. Davidenko's Mathod

Below the cutoff frequency of the guided modes,
the propagation constants become complex, and the
normalized phase and attenuation constants in (7) are
two of the most important parameters in analyzing
leaky mode. Thus, normalized complex propagation
constants should be determined precisely. The com-
plex roots (the complex propagation constants) of
(12) are determined with Davidenko's method®.
Davidenko's method is known to be superior to
another complex roots finding methods such as the
Muller's method™ or the Newton-Raphson method in
its insensitiveness of initial guess and high speed of
root search. We will briefly review Davidenko's
method™®.

Let F(x) =0 be a nonlinear algebraic equation and
x is the root of this equation. In the Newton-
Raphson method™, (n+1)th approximation to the root
x of the equation F(x)=0 can be in the form as

follows.
Pz,
Fa1 = 20— (13)
dx

Equation (13) can be written as

dF(x,y Fx,) F(x,)
g ) — = — (14)

Xn+l ™~ Xn dxy,

where dx, = x,+; — x, is the nth correction term

between the (nt+1)th and nth approximations.

If the dF(x,)/dx is two small, nth correction term
may diverge, so the Newton-Raphson method fails. It
is the problem of the Newton-Rhapson method, if
the value of initial guess (xp) is set up far from the
root x, of the given equation. Equation (14) may be
modified to include a factor of small positive
quantity, &0 < ¢<1) to avoid the failure of the
Newton-Raphson method,

dF(x,) = F(x,)
& = . ¢ (15)

Then, the small value of the right hand side of
(15) caused by the small value of dF(x,)/dx, is
mainly weighted to the factor ¢, thereby the
correction term Ax, may not have large value, so
the Newton-Raphson method would not fail.

Taking the limit of both sides in (15) as ¢—0,
the nth correction term Ax, and the factor ¢ will
change into dx and df, respectively. Thus the
equation (15) becomes

£ B, o

where ¢ is an scalar dummy variable independent of x.
Rearranging equation (16) as

dt dF(x) dInF(x)]
dx

Then, the denominators of both sides in (17) are
di= d[InF(x)] (18)
Integrating both sides of (18),

[dt= - [dwF@I=nF@+c,  (19)
InF(x) = — t+ Cy (20)

where Ci and C; are arbitrary integration constants.
Finally, we have

F(x)= Ce™! 21

where C is a constant. Therefore, we have F(x) =0
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as the independent scalar dummy variable ¢ approa-
ches infinity.

Generally, this procedure can be applied for the
two dimensional case, which corresponds to our
TMy, mode characteristic equation (eq. (12)) having
two unknowns of g and a.

Interchanging the function F(x) with the TMg,
mode characteristic function Q () with y= 8
+ ja, the first two terms of the equation (17) can

be written as

42— — 1790) 22

where J is the Jacobian matrix of the form

- (o252 n2a2)

il da (23)
w25} w25

Since the characteristic function Q(7) is analytic,
the derivative of the @(7) with respect to » can be
expressed using Cauchy-Riemann relation as follows.

;E—a%;l = Re{jg%:z)-}-kﬂm{j%?} .
S

Thus, the following relations are obtained.

(25)

Using (23), (24) and (25), the inverse form of the
Jacobian matrix in (22) is

-1 _ _1 JRAQ;} —Im{@y) 2%
7 det ]| m{ Q) Re{Q3} 26)

with
s = [ 2 o 22 -1

Since the real imaginary terms of the normalized

propagation constants » (= B+ ja) and the charac-

teristic function Q(y) (= RAQ(N} + jIm {XN))
can be expressed as matrix forms as follows,

7=[ £] @8)
o= [ 5485

the equation (22) can be expressed as follows.

_d_[ Zf] — L _[RAQ} ImlQ3
at\ a 1517 | (@5} Re(Q3)
Re{ Q(E)} 30
X[ I A7)} G0
Finally, we have Davidenko's expression of two
coupled first ordinary differential equation with an
independent scalar variable ¢ as follows.

B __ RAQ(NIRe{ Q) + Il QD) Im{ Q)

a 1o, 31
_da __ _RAQN}Im{Q3) — { N}Re( Q)

at 1o

As the dummy variable goes to infinity, each
variable approaches to true values. Equation (31) is
implemented with the software package MATHE-
MATICA 4.0 and numerically solved for large . The
obtained normalized phase and attenuation constants
are substituted to the original TM mode characteristic
equation (12) and are checked the accuracy under 10
" for both the real parts and the imaginary parts.
The obtained normalized complex phase and
attenuation constants are also substituted in (7), and
have checked that the modes have these values are
the (forward) leaky modes®.

IV. Numerical Results

At first, we consider the normalized complex
propagation constants of the circular dielectric rod
for the three lower order TM modes. The dielectric
constant and the radius of the dielectric rod are
arbitrarily chosen to be 5.0 and 5.0 mm, respectively,
and the rod is embedded in free space. Below the
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Fig. 2. Normalized phase constants.

cutoff frequencies of the guided modes, several kinds
of distinct frequency regions such as nonphysical
mode regions, reactive mode regions, antenna mode
regions, and spectral gap regions are observed. Fig.
2 shows the normalized phase constants of the leaky
modes for TMgp, TMyz, and TMg; modes as well as
the guided modes and Fig. 3 shows the corres-
ponding normalized attenuation constants. (In Fig. 3,
we have changed the sign of the normalized
attenuation constants, i.e., y= g—; a. ) The cutoff
frequencies of the guided modes for the TMoi, TMo,
and TMp modes are 11.48, 26.35, and 41.32 GHz,
respectively and below these cutoff frequencies, the
nonzero value of the normalized attenuation con-
stants are introduced as seen from Fig. 3.

As the operating frequency approaches to zero, the
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<
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Fig. 3. Normalized attenuation constants.

normalized phase constants exceed the unity and
approach the infinities. This frequency range does
not have physical meaning“o]. The upper limits of
these nonphysical mode regions for the TMy;, TM,
and TMy; are 3.51, 1.98, and 1.95 GHz, respectively.
Above these limit frequencies, the normalized phase
constants decrease to the minimum values and then
increase to the unity again. This frequency region
('B<1) corresponds to the physical leaky mode

L)
regions

. This region can be divided into two
distinct regions as the reactive mode regions
(B<1,3<a) and the antenna mode regions
(B<1, B>a), respectively. TMo; mode does not
have the reactive mode region, since the frequency
that the normalized phase constants and the
normalized attenuation constants are same lies on the
nonphysical mode region. The reactive mode regions
for the TM(; and TMy; modes are ranging from 1.98
to 17.15 GHz and from 1.95 to 30.57 GHz, respec-
tively; the antenna mode regions for the TMp; and
TMy; modes are from 17.15 GHz to 20.27 GHz and
30.57 to 35.76 GHz, respectively. Both the spectral
widths of the reactive mode region and the antenna
mode region are increased as higher the modes.
Fig. 4 shows the normalized phase constants near
the unity corresponding to Fig. 2. As the frequency
goes to higher than that of the antenna mode region,
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Fig. 4. Normalized phase constants with enlarged
scale near the unity.
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the normalized phase constants exceed the unity
again, seen from Fig. 4. This region also has no
physical meaning and is called the spectral gap
region, ranging from 20.27 to 22.84 GHz and from
35.76 to 39.13 GHz for the TMg; and TMy; modes,
respectively. The spectral width of the spectral gap
region increases as higher the modes. TMy; mode
has no spectral gap regions. The remaining portion
of the frequency. regions below the cutoff frequency
of the guided mode is another antenna mode region
above the spectral gap region in frequency, ranging
from 3.51 to 11.48 GHz, from 22.84 to 26.36 GHz,
and from 39.13 to 41.32 GHz for the TMy;, TMa,
and TMy mode, respectively. The width of the
second antenna mode shrinks as higher the modes.
The upper limit frequency of this range meets the
cutoff frequency of the guided mode. In other
guiding structures such as the NRD guide""! and the
partially dielectric-loaded open guiding structure'”,
the normalized attenuation constant becomes zero at
the frequency with maximum normalized phase
constants within the spectral gap region. The
normalized attenuation constant of our structure
becomes zero at this cutoff frequency of the guided
mode, however, outside the spectral gap region,
implying that the spectral gap region is not always
consistent with the transition region between the
guided mode and the leaky mode region.

V. Conclusion

We investigated the leaky modes on a circular
dielectric rod structure from the precisely determined
normalized phase and attenuation constants by
Davidenko's method. In the frequency region below
the cutoff of the guided modes, distinct frequency
regions such as the nonphysical region, the antenna
mode region, the reactive mode region, the spectral

gap regions are observed.
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