Abstract
For practical electrical insulation design of high temperature superconducting (HTS) power apparatuses, knowledge of the dielectric behavior of both liquid nitrogen (L$N_2$) and subcooled liquid nitrogen (SL$N_2$) are essential. To achieve SL$N_2$ at atmospheric pressure, cryostat was designed and constructed. By pumping up the L$N_2$ in the outer dewar, the temperature of L$N_2$ in the inner dewar at atmospheric pressure can be controlled. The breakdown characteristics of L$N_2$ in quasi-uniform and non-uniform electrical fields for temperatures ranging from 77 K to 65 K at atmospheric pressure and pressure ranging from 0.1 to 0.5 MPa were investigated experimentally. The experimental data suggested that the breakdown voltage (BDV) of L$N_2$ is both highly temperature and pressure dependent. We also carried out statistical analysis of the experimental results using the Weibull distribution. The Weibull shape parameter m for the sphere-to-plane electrodes in SL$N_2$ was estimated to be 11 to 18.