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Substation Reliability Assessment Considering Non-Exponential
Distributions And Restorative Actions

Gwang Won Kim* and Kwang Y. Lee**

Abstract - Reliability assessment of power systems has been an important topic for the past several
decades. It is becoming even more important nowadays as the power market moves toward a new
competitive environment. This paper deals with two topics on reliability assessment. The first is how
to select probability distributions and determine their parameters to model the probabilistic events in a
power system. The second is how to consider restorative actions in the assessment, which directly in-
fluence reliability indices. This paper proposes simple but convincing alternative solutions on the two
topics. In the case study, this paper shows the influences of the probability distributions that are used in

power system modeling.
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1. Introduction

The most crucial requirement of a power system is to
supply quality electric energy economically to customers
without interruption. However, non-interuption is virtually
impossible due to the tremendous investment needed to
maintain the highest level of reliability. This is the primary
reason why a power system reliability assessment is neces-
sary. Using the assessment, the most economical and effec-
tive investment levels can be determined. A vulnerable
power system may cause enormous economical damage as
was seen in the New York City blackout in 1977, with eco-
nomical losses amounting to 350 million dollars [1].

The study of power system reliability assessment started
in the mid 60s. At that time, the main study topic was
building an accurate reliability model [2, 3]. Endrenyi in-
troduced three different states - normal, fault, and switch-
ing state — to the modeling of equipment [4]. They evolved
to a more precise model where a fault is subdivided into a
passive and an active state [5]. Analytic methods have been
mainly utilized all through assessment history owing to
their computational simplicity. However, they have fatal
limitations. Only exponential distribution was used in
modeling, and it is also hard to consider complex situations
such as restorative actions. Therefore, studies have been
undertaken recently to overcome the difficulties using the
Monte Carlo simulation [6, 7 & 8].

This paper proposes two things: one, a simple but con-
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vincing method for building accurate probability models
for each event based on the operation data log; and two, a
probable method for reflecting restorative actions in reli-
ability assessments. Until now, the two topics have not
been explored deliberately as they are considered less im-
portant compared to other topics, and results from statistics
are considered as satisfactory. However, there is still room
for improving assessment accuracy through the specific
study of topics targeting power systems only.

In a case study, the influences of different probability
models are shown using exponential and Weibull distribu-
tions in modeling repair times of equipment. The case
study is performed using Monte Carlo simulation because
it is the only method that allows various kinds of random
variables as well as complex situations such as restorative
actions and maintenances.

2. Probability Model

Since not only times between faults but also times for
repair or maintenance are different from case to case, ran-
dom variables (RVs) are needed to model such probabilis-
tic processes. Until now, exponential distribution has been
the most popular RV in modeling the probabilistic proc-
esses related to power system reliability assessment:

fO)=27* (1)

As for the exponential RV, its mean is 1/A and A is the
failure rate (or repair rate) of the process. This constant
failure rate (or repair rate) is an advantage of the exponen-
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tial RV because of the simplicity of calculation. This sim-
plicity has made the use of the exponential RV accepted as
a reliability assessment tool for the last several decades.
Power engineers want to know reliability indices such as
the loss of load expectation (LOLE) or the loss of load fre-
quency (LOLF). Since such indices are only expectations
or averages of the events concerned, the indices should be
the same whatever RVs are utilized in the assessment as
long as the means of the RVs are the same. Therefore, there
has been no need to introduce complex RVs in the assess-
ment. However, in some cases, especially in the new com-
petitive environment, not only the reliability indices but
also their distributions can be very useful information in a
power system. For example, the probability that a blackout
continues over one hour on a specific load point can be
crucial reliability data. This kind of information depends
on the shapes of RVs as well as their means. Therefore,
there is a need for more elaborate RVs that can model the
probabilistic processes accurately.

The shape of the exponential RV is very restricted be-
cause it has only one parameter that determines shape. RVs
with two parameters can change their shapes with more
flexibility. Gamma, Weibull, Normal, and Log-Normal
RVs are representative of two parameter RVs, which are
defined respectively by the following probability density
functions:
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Many useful RVs such as Chi-square, Erlangian,
Rayleigh, and even exponential RVs are derived from these
RVs. These are good candidates for event modeling in reli-
ability assessment.

The parameters of each RV need to be properly deter-
mined based on an operation data log. The method of
momentum estimator (MME) is one method that can be
used. Since the concerned RVs have two parameters, they
can be uniquely determined using the mean and variance of
data in a log in the sense of MME. The following four
equations are used in this paper to calculate each parameter

of the RVs, Gamma, Weibull, Normal, and Log-Normal
RVs, respectively, where m and v are mean and variance of
data in a log:
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In the case of Weibull RV, parameter 8 needs to be de-
termined using a numerical calculation such as the New-
ton-Raphson method. And, only the positive region has
physical meaning in the Normal RV.

After calculating each parameter, the best RV that de-
scribes a data log most accurately needs to be selected
through a fitness test. The ¥ in the well-known Chi-Square
test can be a criterion of the fitness test,

x2=§(Nk—mk)2 10

k= my,

where K is the number of disjoint intervals, N, is the ob-
served number of outcomes, and my, is the expected number.
To confirm usefulness of ¥ in reliability assessment,
10,000 data points are prepared for test or sample data ac-
cording to Weibull distribution with a=f=2 within the
range of O to 5. Then, parameters of each RVs are calcu-
lated by (6) to (9) and tabulated in Table 1. Fig. 1 shows
their distributions together with the sample data, where the
size of the domain subinterval is 0.1. According to Fig. 1,
Weibull distribution is the closest to the sample data. How-
ever, Chi-Square test claims, in Table 1, that Gamma dis-
tribution is the best. In addition, the y* for the Normal dis-
tribution is too large while its shape differs little from the
sample data. These unusual results are caused by my, in the
denominator of (10). If N, is not zero and my; is nearly zero
at any subinterval, ¥° becomes very large. It is not realistic
that one data point influences a fitness result so much.
Therefore, it is more meaningful to use the area between
the two curves as a fitness test criterion. Table 1 also con-
tains this area error for each RV, which agrees with Fig. 1.
Table 1 also verifies that the parameter calculation
method of this paper given in (6) — (9) is accurate; Parame-
ters of Weibull RV are 2.051 and 2.054, both are very close
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to 2, the original value for the sample data.

Table 1 Parameters and fitness test results

Item Gamma Weibull Normal Log-Nor.
o () 3.725 2.051 0.884 -0.228
B 0.237 2.054 0.210 0.238
i 741.8 5121.8  2.46x107  1.18x10°
area-err 113.3 23.4 152.1 2334
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Fig. 1 Distributions of the sample data and its estimated
models.

3. Reliability Assessment of a Substation

The reliability assessment of a substation is to examine
the connectivity between load points (feeders) and source
points (transmission lines). A substation is composed of
much equipment. If any of this equipment fails, it can in-
fluence the connectivity. Any fault that brings about a
blackout should be followed-up by appropriate restorative
actions to recover the connectivity. A reliable substation
not only contains reliable equipment but must also have
reliable restorative strategies and appropriate redundancies

to support the restoration. Therefore, a strong reliability
assessment technique needs to also consider the restorative
actions. In addition, a proper consideration of periodical
maintenance also improves the accuracy of the assessment.

Until now, Monte Carlo simulation has been the only
method to consider the restorative actions as well as vari-
ous non-exponential distributions in modeling. The follow-
ing is a list of items that may be considered in Monte Carlo
simulation:

- passive and active failures

- maintenance

- restorative action

- various non-exponential random variables

There are three kinds of sampling methods developed
for Monte Carlo simulation; state sampling, state duration
sampling, and system state transition sampling. Among
them, state duration sampling is the most appropriate to
keep the advantages of Monte Carlo simulation: there are
no restrictions in using various RVs, and reliability indices
about frequency can be calculated easily.

Table 2 An example of a fault-blackout table

Faulted Blackout load point (LD, LD>)
element Before restoration After restoration
T, 0 1 11
T, 11 11
T; 10 11
B, 01 11
B, 10 11
B, and B, 0 0 00

Since, in reliability assessment, the interest is to recog-
nize whether blackout areas exist or not, the precise re-
storative schemes that are needed in automatic restoration
are not necessary. Therefore, this paper proposes a fault-
blackout table (FBT) to consider restoration actions easily
in the state duration sampling. The proposed FBT contains
only the relationship between faulted element(s) and
blackout points before and after restoration. Table 2 is a
part of FBT for a substation in Fig. 2.

Since the sample substation contains only two load
points, the above FBT has two digits in the second and
third columns, where 0 means blackout and 1 means non-
blackout. According to the FBT, if a fault occurs at trans-
former 1 (T}), load point 1 (LD,) is in blackout after the
fault and is restored after restorative actions. In case of a
double fault at 7; and T, the resultant blackout information
is simply a result of bit-wise logical AND between the
rows of 7, and T,. However, in the case of a double fault in
circuit breakers 1 and 2 (B, B,), the resultant blackout in-
formation is different from the result of the AND operation
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Fig. 2 One line diagram of Model A.

between the rows of B, and B,. Therefore, FBT needs to
contain separate information for such double faults as
shown in Table 2. Consequently, the FBT contains the data
corresponding to all single faults and some double faults
whose effects cannot be obtained from single fault cases. In
this paper, more than double simultaneous faults are not
considered because they are very rare. Since the proposed
FBT contains only essential information, it is very simple
to implement. In addition, blackout points before restora-
tion as well as after restoration can be determined directly
from the proposed FBT.

4. Case Stundy

This case study has two objectives: one, to show the ne-
cessity of including restorative actions; and two, to show
the effectiveness of using non-exponential RVs in the as-
sessment.

4.1 System Description

Figs 2, 3, and 4 show the structure of substation models
A, B, and C, respectively. Each model has two source
points and two load points. The meaning of each symbol is
shown in detail in Fig. 2.

Table 3 contains a-priori reliability data for each device,
quoted from the reference [6] except variances of repair
times, which were not used because only exponential RVs
were used in that study. This case study considers the
Weibull RV as well as the exponential RV in modeling
repair times.
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Fig. 3 One line diagram of Model B.
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Fig. 4 One line diagram of Mode] C.
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Table 3 Prior reliability information

Table 5 Probability density of the average outage duration

Element a b ¢ d e per outage of Load 1.
CB 0.010 0.01 1 12 6 Time Exponential Weibull
Bus 0.025 - 2 25 12 (hour) A B C A B C
Trans. | 0.100 - ! 15073 0—1 |5809 5854 68295702 59.15 68.8
TR line 1.000 - 1 10 5
- - = 1-2 39.09 2771 31.71 | 4009 27.11 31.19
a: active failure rate [occ./yr]
b: passive failure rate [occ./yr] 2-3 | 282 064 000 289 000 0.00
¢: switching time for restoration [hr] 3-4 000 060 000 { 0.00 0.00 0.00
d: mean time to repair [hr] 4-5 | 000 041 000 | 000 000 0.00
e: variance of repair time [hr]
5- 0.00 12.10 0.00 { 0.00 1374 0.00

In this case study, three different FBTs for each model
are used to consider the effects of restorations. Mainte-
nance is performed based on the following assumptions:

- On transformers, maintenance is performed for ten

hours about once per every five years.

- On circuit breakers, maintenance is performed for five

hours about once per every decade.
There will be no maintenance if any element in a substa-
tion is in fault or maintenance state.

In this case study, the loss of load expectation (LLOLE)
in hours per year, the loss of load frequency (LOLF) in
occurrences per year, and the average outage duration per
outage in hours are utilized as reliability indices.

4.2 Reliability Assessment Results

Since models A, B, and C are symmetrical for each load
point, the reliability indices for LD, and LD, should be
identical. Table 4 shows the reliability indices for LD, per-
formed by Monte Carlo simulation for 200,000 years when
all reliability indices converge satisfactorily.

Table 4 Reliability indices of Load 1.

Index Exponential Weibull
A B C A B C
LOLF } 0.164 0.195 0.139 | 0.165 0.196 0.138
LOLE | 0.190 0.842 0.139 { 0.191 0.843 0.138
a 1.15 4.32 1.00 1.15 4.31 1.00

LOLF: loss of load frequency [occ./yr])
LOLE: loss of load expectation [hr./yr]
a: average outage duration per outage [ht/occ.]

In Table 4, the results are independent of RVs used be-
cause both RVs have the same means. The results, however,
depend on model types. Model C is most reliable because it
has the most redundancies, whose average outage duration
per outage is exactly one hour. That means every blackout
is recovered in one hour by restorative actions. The index
without considering restorative actions would be much
different from the current value, therefore it is crucial to
consider restorative actions in the assessment.

Monte Carlo simulation can offer not only the reliability
indices but also their distributions as shown in Table 5.
From Table 5, it can be recognized that the probability of a
blackout over one hour is about 42% in model A. This can
be crucial information for power companies, especially in a
competitive environment.

If a blackout occurs, it is recovered by restorative ac-
tions by repair of faulted equipment. According to Table 3,
switching times are much smaller than repair times. There-
fore, it is not easy to examine the effect of Weibull RVs if
an outage is recovered by restorative actions; Weibull RVs
are used only in repair time modeling in this case study.
The only exception is a bus fault in Model B. Since Model
B has only one bus, it has no redundancy to replace the
faulted bus. This is why only Model B has non-zeros after
five hours in Table 5. Since the average bus repair time is
25 hours, there needs to be a graph whose time span is at
least 30 hours, like Fig. 5, to examine the results of the dif-
ferent RV models. Fig. 5 shows the influences of different
RVs; in case of a blackout caused by a bus fault in Model
B, recovery probabilities are relatively high around 27
hours if repair time probabilities comply with the Weibull
distribution.

1.5 j
1.2 13
: A
8009
£ /
£ 06 h—
AL
03 . =
j --~---‘-~\-----
O 1 1 A
2 12 22 32

time [hour]
em——Weibull RV = = = Exponential RV

Fig. 5 Probability density comparison of average outage
duration per outage in hours.
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5. Conclusion

Since the popular exponential distribution has only one
parameter, it is restricted in representing the probabilistic
nature in a power system. On the other hand, probability
distributions with two parameters such as Gamma, Weibull
Normal, and Log-Normal are much more flexible in repre-
senting their shapes. This paper proposes a systematic
method for selecting appropriate probability distributions
and their parameters to model the probabilistic nature in a
power system for reliability assessment; first, determine
parameters of each distribution based on mean and vari-
ance of a data log; and second, select the most appropriate
distribution among the candidates through a fitness test
with the area-error criterion.

This paper also proposes an efficient way of considering
restorative actions in reliability assessment; the data tables
that are utilized for this purpose are very simple to make
and easy to use in a reliability assessment.
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