소의 장골에서 치밀골의 생체역학적인 특성

Biomechanical Properties of Cortical Bone in Bovine Long Bones

  • 김남수 (전북대학교 수의과대학) ;
  • 황의희 (전북대학교 수의과대학) ;
  • 최성진 (전북대학교 수의과대학) ;
  • 정인성 (건국대학교 수의과대학) ;
  • 최은경 (충북대학교 수의과대학) ;
  • 최인혁 (전북대학교 수의과대학)
  • 발행 : 2003.09.01

초록

We were preferred bovine cortical bone to the others in xenobonegrafts for human and small animals, because those were not limited to supply and have sufficient size for bone transplantation. The strength (ST) and stiffness (SF) of cortical bone in bone grafts were very important. The strength and stiffness of cortical bone were much difference according to position of long bone in bovine limbs because which were biomechanical different to bear body weight. Therefore, we determinated by three bending point test methods the strength and stiffness of cortical bone which were collected in diaphysis of humerus, radius, femur and tibia of bovine. In the results, the strengths and stiffness among these were highest in radius by ST: 253.84$\pm$40.80 MPa, SF: 7.89$\pm$1.91 Gpa and lowest in humerus by ST: 185.69$\pm$28.54 MPa, SF: 6.21$\pm$1.22 Gpa.

키워드

참고문헌

  1. Biomed Sci Instrum v.32 Correlation of flexural structural properties with bone physical properties : a four species survey Augers,R.A.;Miller,M.R.;Siamese,S.J.;Norrdin,R.W.
  2. Sisson and Grossman's The anatomy of the domestic animals, Getty R.(4th ed.) General biostatics and biomechanics Badoux,D.M.
  3. Manual of internal fixation in small animals(2nd ed.) Brinker,W.O.;Olmstead,M.L.;Geoffrey,S.S.;Prieur,W.D.
  4. J. Bone Miner Res. v.14 no.12 Growing C57B1/6 mice increase whole bone mechanical properties by increasing geometric and material properties Brodt,M.D.;Ellis,C.B.;Silva,M.J. https://doi.org/10.1359/jbmr.1999.14.12.2159
  5. J. Bone Joint Surg v.58A Aging of bone tissue: Mechanical properties Burstein,A.H.;Reilly,D.T.;Martens,M.
  6. J. Bone Joint Surg Am. v.57 no.7 Contribution of collagen and minerals to the elastic-plastic properties of bone Burstein,A.H.;Zika,J.M.;Heiple,K.G.;Klein,L. https://doi.org/10.2106/00004623-197557070-00013
  7. J. Periodontol v.64 Use of bovine-derived hydroxyapatite in the treatment of edentulous ridge defects: a human clinical and histologic case report Callan,D.P.;Rohrer,M.D. https://doi.org/10.1902/jop.1993.64.6.575
  8. J. Biomech Eng. v.108 no.1 Wolff's law of trabecular architecture at emodeling equilibrium Cowin,S.C. https://doi.org/10.1115/1.3138584
  9. J. Biomech v.23 no.8 Physical characteristics affecting the tensile failure properties of compact bone Currey,J.D. https://doi.org/10.1016/0021-9290(90)90030-7
  10. Plastic surgery I, General principle Repair and grafting of bone Cutting,C.B.;McCarthy,J.G.;Knize,D.M.
  11. Med. Sci. Monit. v.8 no.1 Prediction of the biomechanical properties of cancellous bone using ultrasaund velocity and bone mineral density - an vitro study Drozdzowska,B.;Pluskiewicz,W.;Przedlackl,J.
  12. Calcif tissue Int v.57 Mechanotransduction and the functional response of bone to mechanical strain Duncan,R.L.;Turner,C.H. https://doi.org/10.1007/BF00302070
  13. J. Bone Miner Res. v.8 no.11 Interrelationships between densitometric, geometric, and mechanical properties of rat femora: inferences concerning mechanical regulation of bone modeling Ferretti,J.L.;Capozza,R.F.;Mondelo,N.;Zanchetta,J.R. https://doi.org/10.1002/jbmr.5650081113
  14. J. Bone Miner Res. v.7 no.Sup.2 Interrelationships between geometric and mechanical properties of long bones from three rodent species with very different biomass: phylogeneti implications Ferretti,J.L.;Spiaggi,E.P.;Capozza,R.;Cointry,G.;Zanchetta,J.R. https://doi.org/10.1002/jbmr.5650071413
  15. J. Biomech v.28 The adaptation of bone apparent density to applied load Fyhrie,D.P.;Schaffler https://doi.org/10.1016/0021-9290(94)00059-D
  16. Bone v.26 no.2 Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension Fyhrie,D.P.;Vashishth https://doi.org/10.1016/S8756-3282(99)00246-X
  17. Osteoarthritis and Cartilage v.10 Functional anatomy of articular cartilage under compressive loading quantitative apects of global, local and zonal reaction of the collagenase network with respect to the surface integrity Glaser,C.;Putz,R. https://doi.org/10.1053/joca.2001.0484
  18. J. Biomech. v.27 no.4 The relationship between the structural and orthogonal compressive properties of trabecular bone Goulet,R.W.;Goldstein,S.A.;Ciarelli,M.J.;Kuhn,J.L.:Brown,M.B.;Feldkamp,L.A. https://doi.org/10.1016/0021-9290(94)90014-0
  19. Lamensess in cattle(2nd ed.) Greenough,P.R.;MacCallum,F.J.;Weaver,A.D.
  20. J. Med. Eng. Technol. v.19 no.1 A new method of comparative bone strength measurement Hamer,A.J.;Strachan,J.R.;Black,M.M.;Ibbotson,C.;Elson,R.A. https://doi.org/10.3109/03091909509030263
  21. Calcif Tissue Int. v.64 no.1 Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity Hans,D.;Wu,C.;Njeh,C.F.;Zhao,S.;Augat,P.;Newitt,D.;Link,T.;Lu,Y.;Majumdar,S.;Genant,H.K. https://doi.org/10.1007/s002239900572
  22. J. Orthop Sci. v.3 Changes in the extracellular matrix on the surface of sintered bovine bone implanted in the femur of a rabbit: An immunohistochemical study Hashizume,H.;Tamaki,T.;Oura,H.;Minamide,A. https://doi.org/10.1007/s007760050020
  23. Bone v.21 The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro Hodgskinson,R. https://doi.org/10.1016/S8756-3282(97)00098-7
  24. Surgery v.107 Osseus wound healing with xenogeneic bone implants with a biodegradable carrier Hollinger,J.O.;Schmitz,J.P.;Mark,D.E.;Seyfer,A.E.
  25. Am. J. Vet. Res. v.57 no.3 Noninvasive kinematic analysis of the walk in healthy large-breed dogs Hottinger,H.A.;DeCamp,C.E.;Olivier,N.B.;Hauptman,J.G.;Soutas-Little,R.W.
  26. Current Orthopedics v.15 no.3 Bone transplantation Hubble,M.J.W. https://doi.org/10.1054/cuor.2001.0179
  27. Textbook of small animal surgery(2nd ed.) Fracture biology and biomechanics Hulse,D.;Hyman Bill
  28. J. of Korean Orthop Assoc. v.23 no.3 A study on freeze-dried bone Jang,I.Y.
  29. J. Biomechanics v.10 Human ulnar bending stiffness, mineral content, geometry and strength Jurist,J.M.;Foltz,A.S. https://doi.org/10.1016/0021-9290(77)90099-9
  30. J. Biomech v.27 Differences between the tensile and compressive strength of bovine tibial trabecular bone depend on modulus Keaveny,T.M.;Wachtel,E.F.;Ford,C.M.;Hayes,W.C. https://doi.org/10.1016/0021-9290(94)90054-X
  31. J. Orthop Res v.8 Young's modulus, bending strength and tissue physical properties of human compact bone Keller,T.S.;Mao,Z.;Spengler,D.M. https://doi.org/10.1002/jor.1100080416
  32. J. Orthop Res. v.4 no.1 Geometric, elastic, and structural properties of maturing rat femora Keller,T.S.;Spengler,D.M.;Carter,D.R. https://doi.org/10.1002/jor.1100040107
  33. J. biomech v.31 Yield strain behavior of trabecular bone Kopperdahl,D.L.;Keaveny,T.M. https://doi.org/10.1016/S0021-9290(98)00057-8
  34. Biomed Mater Eng v.8 no.5-6 Varying the mechanical properties of bone tissue by changing the amount of its structurally effective bone mineral content Kotha,S.P.;Walsh,W.R.;Pan,Y.;Guzelsu,N.
  35. J. Biomech. v.17 no.4 The relationship between elastic properties and microstructure of bovine cortical bone Lipson,S.F.;Katz,J.L. https://doi.org/10.1016/0021-9290(84)90134-9
  36. Am. J. Vet. Res. v.55 no.8 Mechanical properties of long bones in dogs Markel,M.D.;Sielman,E.;Rapoff,A.J.;Kohles,S.S.
  37. J. Biomech. v.24 no.Sup.1 Determinants of the mechanical properties of bones Martin,R.B. https://doi.org/10.1016/0021-9290(91)90379-2
  38. J. Biomech. v.22 no.5 The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength Martin,R.B.;Ishida,J. https://doi.org/10.1016/0021-9290(89)90202-9
  39. J. Biomech v.10 Age and sex related changes in the structure and strength of the human femoral shaft Martin,R.B.;Atkinson https://doi.org/10.1016/0021-9290(77)90045-8
  40. Textbook of small animal surgery(2nd ed.) Bone grafts Millis,D.L.;Martinez,S.A.
  41. Osteopor Int. v.7 Prediction of human femoral bone strength using ultrasound velocity and BDM Njeh,C.F.;Kuo,C.W.;Langton,C.M.(etc.) https://doi.org/10.1007/s001980050035
  42. Am. J. Vet. Res. v.64 no.5 Two-dimensional link-segment model of the forelimb of dogs at a walk Nielsen,C.;Stover,S.M.;Schulz,K.S.;Hubbard,M.;Hawkins,D.A. https://doi.org/10.2460/ajvr.2003.64.609
  43. J. Biomech v.35 no.7 An alternative ultrasonic method for measuring the elastic properties of cortical bone Pithioux,M.;Lasaygues,P.;Chabrand,P. https://doi.org/10.1016/S0021-9290(02)00027-1
  44. Biomaterials v.14 no.5 Comparison of mechanical properties of human, bovine bone and a new processed bone xenograft Poumarat,G.;Squire,P. https://doi.org/10.1016/0142-9612(93)90051-3
  45. J. Biomech v.8 The elastic and ultimate properties of compact bone tissue Reilly,D.T.;Burstein,A.H. https://doi.org/10.1016/0021-9290(75)90075-5
  46. Matrix Biol v.11 Xenogeneic osteogenin, a bone morphogenetic protein, and demineralized bone matrices, including human, induce bone differentation in athymic rats and baboons Ripamonti,U.;Magan,A.;Ma,S.;Van den Heever,B.;Moehl,T.;Reddi,H. https://doi.org/10.1016/S0934-8832(11)80195-2
  47. Clin Orthop Rel Res. v.174 Xenogeneic bone grafting in humans Salama,R.
  48. Bone v.14 Basic biomechanical measurements of bone: A tutorial Turner,C.H.;Burr,D.B. https://doi.org/10.1016/8756-3282(93)90081-K
  49. Bone v.31 no.4 Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently Toyras,J.;Nieminen,M.T.;Kroger,H.;Jurvelin,J.S. https://doi.org/10.1016/S8756-3282(02)00843-8
  50. Int Orthop v.25 no.1 Bovine bone implant with bovine bone morphogenetic protein in healing a canine ulnar defect Tuominen,T.;Jamsa,T.;Tuukkanen,J.;Marttinen,A.;Lindholm,T.S.;Jalovaara,P. https://doi.org/10.1007/s002640000208
  51. Calcif Tissue Int. v.27 no.2 Age-related changes in the density and tensile strength ofn human femoral cortical bone Wall,J.C.;Chatterji,S.K.;Jeffery,J.W. https://doi.org/10.1007/BF02441170
  52. J. Orthop. Res. v.19 no.6 Tensile properties of the physis vary with anatomic location, thickness, strain rate and age Williams,J.L.;Eick,J.D.;Schmidt,T.L. https://doi.org/10.1016/S0736-0266(01)00040-7
  53. Int. J. Oral Maxillofac Implants v.14 A comparative study of anorganic xenogenic bone and autogenous bone implants for bone regeneration in rabbits Young,C.;Sandstedt,P.;Skoglund,A.
  54. Bone v.22 no.1 Changes in the stiffness, strength, and toughness of human cortical bone with age Zioupos,P.;Currey,J.D. https://doi.org/10.1016/S8756-3282(97)00228-7
  55. J. Biomemedical material research v.45 no.2 The role of collagenin the declining mechanical properties of aging human cortical bone Zioupos,P.;Currey,J.D.;Hamer,A.J. https://doi.org/10.1002/(SICI)1097-4636(199905)45:2<108::AID-JBM5>3.0.CO;2-A