References
- Biomed Sci Instrum v.32 Correlation of flexural structural properties with bone physical properties : a four species survey Augers,R.A.;Miller,M.R.;Siamese,S.J.;Norrdin,R.W.
- Sisson and Grossman's The anatomy of the domestic animals, Getty R.(4th ed.) General biostatics and biomechanics Badoux,D.M.
- Manual of internal fixation in small animals(2nd ed.) Brinker,W.O.;Olmstead,M.L.;Geoffrey,S.S.;Prieur,W.D.
- J. Bone Miner Res. v.14 no.12 Growing C57B1/6 mice increase whole bone mechanical properties by increasing geometric and material properties Brodt,M.D.;Ellis,C.B.;Silva,M.J. https://doi.org/10.1359/jbmr.1999.14.12.2159
- J. Bone Joint Surg v.58A Aging of bone tissue: Mechanical properties Burstein,A.H.;Reilly,D.T.;Martens,M.
- J. Bone Joint Surg Am. v.57 no.7 Contribution of collagen and minerals to the elastic-plastic properties of bone Burstein,A.H.;Zika,J.M.;Heiple,K.G.;Klein,L. https://doi.org/10.2106/00004623-197557070-00013
- J. Periodontol v.64 Use of bovine-derived hydroxyapatite in the treatment of edentulous ridge defects: a human clinical and histologic case report Callan,D.P.;Rohrer,M.D. https://doi.org/10.1902/jop.1993.64.6.575
- J. Biomech Eng. v.108 no.1 Wolff's law of trabecular architecture at emodeling equilibrium Cowin,S.C. https://doi.org/10.1115/1.3138584
- J. Biomech v.23 no.8 Physical characteristics affecting the tensile failure properties of compact bone Currey,J.D. https://doi.org/10.1016/0021-9290(90)90030-7
- Plastic surgery I, General principle Repair and grafting of bone Cutting,C.B.;McCarthy,J.G.;Knize,D.M.
- Med. Sci. Monit. v.8 no.1 Prediction of the biomechanical properties of cancellous bone using ultrasaund velocity and bone mineral density - an vitro study Drozdzowska,B.;Pluskiewicz,W.;Przedlackl,J.
- Calcif tissue Int v.57 Mechanotransduction and the functional response of bone to mechanical strain Duncan,R.L.;Turner,C.H. https://doi.org/10.1007/BF00302070
- J. Bone Miner Res. v.8 no.11 Interrelationships between densitometric, geometric, and mechanical properties of rat femora: inferences concerning mechanical regulation of bone modeling Ferretti,J.L.;Capozza,R.F.;Mondelo,N.;Zanchetta,J.R. https://doi.org/10.1002/jbmr.5650081113
- J. Bone Miner Res. v.7 no.Sup.2 Interrelationships between geometric and mechanical properties of long bones from three rodent species with very different biomass: phylogeneti implications Ferretti,J.L.;Spiaggi,E.P.;Capozza,R.;Cointry,G.;Zanchetta,J.R. https://doi.org/10.1002/jbmr.5650071413
- J. Biomech v.28 The adaptation of bone apparent density to applied load Fyhrie,D.P.;Schaffler https://doi.org/10.1016/0021-9290(94)00059-D
- Bone v.26 no.2 Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension Fyhrie,D.P.;Vashishth https://doi.org/10.1016/S8756-3282(99)00246-X
- Osteoarthritis and Cartilage v.10 Functional anatomy of articular cartilage under compressive loading quantitative apects of global, local and zonal reaction of the collagenase network with respect to the surface integrity Glaser,C.;Putz,R. https://doi.org/10.1053/joca.2001.0484
- J. Biomech. v.27 no.4 The relationship between the structural and orthogonal compressive properties of trabecular bone Goulet,R.W.;Goldstein,S.A.;Ciarelli,M.J.;Kuhn,J.L.:Brown,M.B.;Feldkamp,L.A. https://doi.org/10.1016/0021-9290(94)90014-0
- Lamensess in cattle(2nd ed.) Greenough,P.R.;MacCallum,F.J.;Weaver,A.D.
- J. Med. Eng. Technol. v.19 no.1 A new method of comparative bone strength measurement Hamer,A.J.;Strachan,J.R.;Black,M.M.;Ibbotson,C.;Elson,R.A. https://doi.org/10.3109/03091909509030263
- Calcif Tissue Int. v.64 no.1 Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity Hans,D.;Wu,C.;Njeh,C.F.;Zhao,S.;Augat,P.;Newitt,D.;Link,T.;Lu,Y.;Majumdar,S.;Genant,H.K. https://doi.org/10.1007/s002239900572
- J. Orthop Sci. v.3 Changes in the extracellular matrix on the surface of sintered bovine bone implanted in the femur of a rabbit: An immunohistochemical study Hashizume,H.;Tamaki,T.;Oura,H.;Minamide,A. https://doi.org/10.1007/s007760050020
- Bone v.21 The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro Hodgskinson,R. https://doi.org/10.1016/S8756-3282(97)00098-7
- Surgery v.107 Osseus wound healing with xenogeneic bone implants with a biodegradable carrier Hollinger,J.O.;Schmitz,J.P.;Mark,D.E.;Seyfer,A.E.
- Am. J. Vet. Res. v.57 no.3 Noninvasive kinematic analysis of the walk in healthy large-breed dogs Hottinger,H.A.;DeCamp,C.E.;Olivier,N.B.;Hauptman,J.G.;Soutas-Little,R.W.
- Current Orthopedics v.15 no.3 Bone transplantation Hubble,M.J.W. https://doi.org/10.1054/cuor.2001.0179
- Textbook of small animal surgery(2nd ed.) Fracture biology and biomechanics Hulse,D.;Hyman Bill
- J. of Korean Orthop Assoc. v.23 no.3 A study on freeze-dried bone Jang,I.Y.
- J. Biomechanics v.10 Human ulnar bending stiffness, mineral content, geometry and strength Jurist,J.M.;Foltz,A.S. https://doi.org/10.1016/0021-9290(77)90099-9
- J. Biomech v.27 Differences between the tensile and compressive strength of bovine tibial trabecular bone depend on modulus Keaveny,T.M.;Wachtel,E.F.;Ford,C.M.;Hayes,W.C. https://doi.org/10.1016/0021-9290(94)90054-X
- J. Orthop Res v.8 Young's modulus, bending strength and tissue physical properties of human compact bone Keller,T.S.;Mao,Z.;Spengler,D.M. https://doi.org/10.1002/jor.1100080416
- J. Orthop Res. v.4 no.1 Geometric, elastic, and structural properties of maturing rat femora Keller,T.S.;Spengler,D.M.;Carter,D.R. https://doi.org/10.1002/jor.1100040107
- J. biomech v.31 Yield strain behavior of trabecular bone Kopperdahl,D.L.;Keaveny,T.M. https://doi.org/10.1016/S0021-9290(98)00057-8
- Biomed Mater Eng v.8 no.5-6 Varying the mechanical properties of bone tissue by changing the amount of its structurally effective bone mineral content Kotha,S.P.;Walsh,W.R.;Pan,Y.;Guzelsu,N.
- J. Biomech. v.17 no.4 The relationship between elastic properties and microstructure of bovine cortical bone Lipson,S.F.;Katz,J.L. https://doi.org/10.1016/0021-9290(84)90134-9
- Am. J. Vet. Res. v.55 no.8 Mechanical properties of long bones in dogs Markel,M.D.;Sielman,E.;Rapoff,A.J.;Kohles,S.S.
- J. Biomech. v.24 no.Sup.1 Determinants of the mechanical properties of bones Martin,R.B. https://doi.org/10.1016/0021-9290(91)90379-2
- J. Biomech. v.22 no.5 The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength Martin,R.B.;Ishida,J. https://doi.org/10.1016/0021-9290(89)90202-9
- J. Biomech v.10 Age and sex related changes in the structure and strength of the human femoral shaft Martin,R.B.;Atkinson https://doi.org/10.1016/0021-9290(77)90045-8
- Textbook of small animal surgery(2nd ed.) Bone grafts Millis,D.L.;Martinez,S.A.
- Osteopor Int. v.7 Prediction of human femoral bone strength using ultrasound velocity and BDM Njeh,C.F.;Kuo,C.W.;Langton,C.M.(etc.) https://doi.org/10.1007/s001980050035
- Am. J. Vet. Res. v.64 no.5 Two-dimensional link-segment model of the forelimb of dogs at a walk Nielsen,C.;Stover,S.M.;Schulz,K.S.;Hubbard,M.;Hawkins,D.A. https://doi.org/10.2460/ajvr.2003.64.609
- J. Biomech v.35 no.7 An alternative ultrasonic method for measuring the elastic properties of cortical bone Pithioux,M.;Lasaygues,P.;Chabrand,P. https://doi.org/10.1016/S0021-9290(02)00027-1
- Biomaterials v.14 no.5 Comparison of mechanical properties of human, bovine bone and a new processed bone xenograft Poumarat,G.;Squire,P. https://doi.org/10.1016/0142-9612(93)90051-3
- J. Biomech v.8 The elastic and ultimate properties of compact bone tissue Reilly,D.T.;Burstein,A.H. https://doi.org/10.1016/0021-9290(75)90075-5
- Matrix Biol v.11 Xenogeneic osteogenin, a bone morphogenetic protein, and demineralized bone matrices, including human, induce bone differentation in athymic rats and baboons Ripamonti,U.;Magan,A.;Ma,S.;Van den Heever,B.;Moehl,T.;Reddi,H. https://doi.org/10.1016/S0934-8832(11)80195-2
- Clin Orthop Rel Res. v.174 Xenogeneic bone grafting in humans Salama,R.
- Bone v.14 Basic biomechanical measurements of bone: A tutorial Turner,C.H.;Burr,D.B. https://doi.org/10.1016/8756-3282(93)90081-K
- Bone v.31 no.4 Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently Toyras,J.;Nieminen,M.T.;Kroger,H.;Jurvelin,J.S. https://doi.org/10.1016/S8756-3282(02)00843-8
- Int Orthop v.25 no.1 Bovine bone implant with bovine bone morphogenetic protein in healing a canine ulnar defect Tuominen,T.;Jamsa,T.;Tuukkanen,J.;Marttinen,A.;Lindholm,T.S.;Jalovaara,P. https://doi.org/10.1007/s002640000208
- Calcif Tissue Int. v.27 no.2 Age-related changes in the density and tensile strength ofn human femoral cortical bone Wall,J.C.;Chatterji,S.K.;Jeffery,J.W. https://doi.org/10.1007/BF02441170
- J. Orthop. Res. v.19 no.6 Tensile properties of the physis vary with anatomic location, thickness, strain rate and age Williams,J.L.;Eick,J.D.;Schmidt,T.L. https://doi.org/10.1016/S0736-0266(01)00040-7
- Int. J. Oral Maxillofac Implants v.14 A comparative study of anorganic xenogenic bone and autogenous bone implants for bone regeneration in rabbits Young,C.;Sandstedt,P.;Skoglund,A.
- Bone v.22 no.1 Changes in the stiffness, strength, and toughness of human cortical bone with age Zioupos,P.;Currey,J.D. https://doi.org/10.1016/S8756-3282(97)00228-7
- J. Biomemedical material research v.45 no.2 The role of collagenin the declining mechanical properties of aging human cortical bone Zioupos,P.;Currey,J.D.;Hamer,A.J. https://doi.org/10.1002/(SICI)1097-4636(199905)45:2<108::AID-JBM5>3.0.CO;2-A