Lip Shape Model and Lip Localization using Shape Clustering

형태 군집화를 이용한 입술 형태 모델과 입술 추출

  • 장경식 (동의대학교 멀티미디어공학과)
  • Published : 2003.10.01

Abstract

In this paper, we propose an efficient method for locating lip. The lip shape is represented as a set of points based on Point Distribution Model. We use the Isodata clustering algorithm to find clusters for all training data. For each cluster, a lip shape model is calculated using principle component analysis. For all training data, a lip boundary model is calculated based on the pixel values around the lip boundary. To decide whether a recognition result is correct, we use a cost function based on the lip boundary model. Because of using different models according to the lip shapes, our method can localize correctly the flu far from the mean shape. The experiments have been performed for many images, and show correct recognition rate of 92%.

이 논문은 입술의 모양을 효과적으로 추출하는 방법을 제안하였다. 입술은 Point Distribution Model에 근거하여 점들의 집합으로 표현하였다. Isodata군집 알고리듬을 이용하여 전체 학습 영상을 입술 형태별로 군집화 하고 주성분 분석법을 사용하여 각 군집에 대한 입술의 형태 모델을 구하였다 추출 결과가 입력 영상의 실제 입술 위치를 올바르게 찾았는지 판정하기 위하여 입술 경계선 주변의 화소값들을 이용한 입술의 경계선 모델을 구하고 이를 반영하는 평가함수를 구성하였다. 형태 차이를 반영하여 얻은 입술 형태 모델을 사용하여 입술을 추출하기 때문에 전체 학습 영상의 평균 모양과 많은 차이를 보이는 입술을 정확하게 추출할 수 있었다. 여러 영상을 대상으로 실험하여 약 92%의 성공률을 얻었다.

Keywords